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1. Introduction

Analysis of conditions for crack initiation and fracture toughness in the
case of metallic materials under various loading rates are the problems of
great interest in fracture mechanics. For Mode I and Mode III several

investigations have been carried out to reveal the loading rate effect ( K

K ) on fracture toughness (Kic, Kijic)- At the same time, systematic
analyses have been performed for majority of structural materials to study

strain rate (€) effect on the yield stress (Oy), ultimate stress (¢,), material
strain hardening, etc. Using of such data, some correlations between
fracture toughness and parameters of stress-strain diagram at different
strain rates have been derived (Klepaczko, 1990). The theoretical
background of such correlations consists of solutions for elastic and elastic-
plastic stress-strain fields near a crack tip, such as Williams' (1957) linear-
elastic solution for crack tip fields at a stationary crack; approximate
analyses of Irwin (1960), Dugdale (1960) (cften refered to as the
Barenblatt-Dugdale-Bilby-Cottrell-Swinden model), Duffy (1969) for the
size and shape of the crack tip plastic zone; solutions of Tuba (1966) as
well as Hutchinson (1968a) and Rice and Rosengren (1968) (refered to as
the HRR-solution) for crack tip fields in elastic-plastic materials. Analyses
of stress distribution at the tip of a stationary crack under dynamic loading
have been performed by Freund (1990) and Lee and Freund (1990).

Application of the HRR-solution and criterion of cleavage fracture in
the form (Ritchie er al., 1973)

K =K when o, =opatx= g

results in the following relationship

K..=c.|CF 2 a [(N) IF 1/2 (1.1)
IC Y[ TN (l V_,)z N+]

where o is the critical cleavage stress; lF is characteristic distance ahead of
the crack tip; S, is the stress component in Cartesian coordinates (x,y)

with the origin at the crack tip (Fig.l); @« and N are material constants in
the Ramberg-Osgood equation

& _ _H,( T (1.2)
ey Oy %

with £Y=GY/E; E and v are Young's modulus and Poisson's ratio; Zyy and I(N)
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are coordinate function and aumerical factor in the HRR-solution (see
Chapter 3).

Another important application of fracture mechanics arises from a
relationship between loading rate and specimen thickness for fracture

toughness measurements, i.e. B=f(K;). The reason for limitations on the B
value turns out from requirements of small scale yielding or, equivalently,
restrictions on the crack tip plastic zone size, . Thus, making use of

Irwin's (1960) correction for plarn. strain, one finds

=1 (K 1.3
i 31:(0,,)2 o

The well-known ASTM limiting condition

B 2 2.5 (K,Jo,)’ (1.4)
is found to be equivalent to the following one

B > 24r, (1.5)
Since the r, value is diminishing with increasing the loading rate,
specimens smaller in dimensions can be employed in K¢ tests at high

loading rates. An example of correlation between B and K| is given by
Klepaczko (1990).

It should be noted that the majority of experimenial and theoretical

results on rate sensitivity of fracture toughness are obtained for cracks in

Mode I and Mode III (see Klepaczko, 1990). For in-plane shear cracks

(Mode II) such solutions are not available. No much progress is achieved in

experimental techniques for measurements of fracture toughness (Kyic, Jyc)

in Mode II. Only a few works are known on experimental studies of Mode

IT crack behavior at quasi-static case (Banks-Sills and Arcan, 1986; Banks-

Sills and Sherman, 1991; Davies er al., 1985; Hoyniak and Conway, 1979;

Maccagno and Knott, 1992; Mall and Mol, 1991; Tohgo et al., 1989; Tohgo

and Ishii, 1992) and dynamic case (Kalthoff and Winkler, 1987; Mason et

. al., 1992). Some important features of crack behavior in Mode II which

. follow from those works are outlined below:

(1) Difficulties in creating pure Mode II conditions. Only in quasi-
static loading, pure Mode II can be expected to occur for some specimens
and load schemes. More often, mixed Mode I-II crack tip deformation
\ (K>0) or crack surfaces contact (K;<0) are observed. In the latter case,
application of the J-integral and HRR-solution for characterization of crack
tip fields becomes questionable.

(2) Different character of fracture initiation for specimens of different '
materials and with different load schemes. Thus, some authors observe
_ crack initiation in direction of about 70...80° with respect to the initial
* crack line, which is usuvally refered to as brittle fracture mechanism (Sih,

§I



1973; 1974); in this case the crack initiation angle can be predicted by
criteria of maximum tensile stress or minimum strain energy density. In
the majority of investigations (Banks-Sills and Sherman, 1991; Maccagno
and Knott, 1992; Tohgo and Ishii, 1992) crack propagates in direction close
to the original crack (or notch) plane, which is refered to as ductile fracture
mechanism.

(3) Transition in fracture mechanism with increasing loading rates. It
has been observed by Kalthoff and Winkler (1987) in dynamic tests of
steel that after certain limit of the loading rate the change in the crack
initiation angle (from 70° with respect to the ligament at lower loading rate
to about 10° at higher loading rate) occured. This transition has been
supposed to occure due to formation of localized shear bands.

Also some difficulties arise in numerical simulation of crack behavior
at high loading rates. An analytic solution for the stress field at a
stationary crack tip in Mode I and II under dynamic loading has been
derived by Lee and Freund (1990) for the case of linear-elastic material
and idealized geometry of a cracked body, i.e. an edge crack in a hali-
plane. Similar analysis for specimens of finite size and elastic-plastic
material seams to be very ccmplicated with prime attention paid to use
adequate stress-strain, strain-rate, temperature constitutive relations
governing material behavior at the crack tip in high strain rates (see
Klepaczko, 1987).

As an alternative to exact solution of elastic-plastic stress-strain
fields at a crack tip under dynamic loading, an approximate quasi-static
approach can be applied as follows. Equations (1.1),(1.3),(1.4), as well as
other solutions for evaluation of K¢, r,, B and stress and strain
components, involve material parameters (Oy,,N) which are in general
rate sensitive. Since those material parameters can be found for certain
material as functions of strain rate, their introduction into equations for
fracture mechanics parameters leads to approximate assessments of
material behavior at a crack tip for different loading rates. It is obvious
that such a quasi-static analysis takes no account of inerta effect,
temperature and strain rate redistribution due to presence of a crack. In
fact, when an exact analysis cannot be avoided, more general constitutive
relations are to be used along with numerical methods.

In the present report, the quasi-static analysis is carried out to study
strain rate effect on elastic-plastic stress-strain fields at a crack tip in
Mode II for materials with different rate sensitivity: mild steel, titanium
alloy and aluminum alloy. Evolution of the crack tip plastic zone size and
shape with increasing the strain rate from 10-4 to 103 s-1 is analysed. Also
a brief review of solutions on elastic and elastic-plastic crack tip fields in
Mode II and results of Kyjc or Jyc measurements are presented.



2. Characterization of Stress and Strain Fields and Plastic
Zone at the Crack Tip in Mode II Via Small Scale
Yielding Approximation

The small scale yielding (SSY) concept is succesfully applied to fracture
mechanics for approximate analysis of plasticity effects on crack behavior.
If the SSY concept is considered, a small plastic zone of radius r=r, is
supposed to occur at the crack tip with a stress field within and near the
plastic zone (r < rp+3) determined from the general elastic-plastic solution,
while at the distance r > r,+8 from the crack tip the stress components are

governed by the asymptotic linear-elastic representation (Williams, 1957;
Irwin, 1958)

o® = K50 0 + 00" 2.1)
Varr
Here oigﬂ) are the stress components in Cartesian coordinates (x,y ) with the
origin at the crack tip (Fig.1); (r,8) are the polar coordinates with the origin
at the crack tip (Fig.1); Zigﬂ) are specified functions of the polar angle; index
"B" is refered to the crack tip deformation mode, B = LILII (I - opening
mode, II - in-plane shear mode, III - anti-plane deformation); Kp is the
stress intensity factor for corresponding deformation mode. The second
term in the right side of eq.(2.1) is limited at r—0.

Evidently, the necessary condition for validity of the SSY
approximation is the requirement of small size of the plastic zone in
comparison to the crack length a, body thickness B, ligament size H=W-a
(W being the width of a cracked section), i.e.

p«a, x‘p«B, rp«H
Practically, in measuring the plane strain fracture toughaess, the conditions
discussed above are satisfied with the ASTM requirement
B 225 (K Joy)’
which corresponds to rp;<0.04B, when Irwin's plasticity correction is taken.

The use of the SSY approximation allows for linear-elastic fracture
mechanics methods and criteria (e.g., Kp=Kpc) be extended to analyse the
elastic-plastic material behavior. In particular, within the 3SY
approximation some efficient solutions for the crack tip plastic zone size
and shape have been derived (Irwin, 1960; Dugdale, 1960; Duffy et al.,
1969; Larsson and Carlsson, 1973; Rice, 1974). Some approximate
assessments of the crack tip plastic zone in Mode II are discussed below
with prime attention paid to the change of rydue to variation of the
applied stress level, T,p,/Ty. which makes it possible to incorporate the
rate sensitivity of the yield stress, Ty, into analysis which follows.

e g
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2.1. Mode I Crack Tip Stress Field in Small Scale Yielding

Asymptotic terms of the linear-elastic stress field at the crack tip in Mode
IT are given by (Williams, 1957; Irwin, 1957: Broek. 1987: Kanninen and

Popelar. 1985)

Ku N
Gy = zz)(e)
\f21tr

In Cartesian coordinaies one has

. 6 8 36
Tex = - Smf (2 + cosg cos—z— ),
. 0 e 36
T = sinZ cos? cacc? 22
2y sm2 cos2 cos2 ) (2.2)
_ 8 .8 .38
Ly = COaE (1 sz sm—z—,) ,
' Y= (T + 2y for plane strain,
Z..=0 for plane stress,
Y.=2.,.=0;
in cylindrical coordinates
= sin? (3cos2? .9
o = sinz; (3ces 5 2),
5 . 8 e a
299 = - DSIHE COS‘?‘z— s (23)
6 ,, )
o= cosi (gcoszé— -2),
Z2=v(Zn + Zgg) for plene strain,
2,:=0 for plane stress,
Zoe=Zy=0:
the principal stresses are
ora= B (sind « V1-(3/4)sin%0 ).
N 2xr - )
o5 = -2v KL sing for plane strain, 2.4)
V2rr =
o3 =0 for plane swress

The stress intensity factor. Ky , is a measure of the amplitude of the crack
tip suess field. In the presence of plasticity, the J-integral (Cherepanov,
1979; Rice, 1968a) is found to be an adequate parameter characterizing the
crack tip field amplitude (Hutchinson, 1968a). According to Rice (1968a),
the J-integral is represented by



J=f(Wdy-mjnj‘1“i) ds 2.5)
ox

r

where I is an arbitrary contour surrounding the crack tip with the origin
and end at lower and upper crack surfaces respectively, n; are comporents
of the outer normal to I', u; are displacement components (xj=x, x3=y); W is
the strain energy density,

€ij

W= )rcijdeij (26)

0
Under conditions of traction-free crack surfaces and absence of body
forces, the J-integral is path-independent. This property is employed to
derive several fracture mechanics solutions both in the elastic and elastic-
plastic cases. The J-integral was introduced into the elastic-plastic crack tip
field solutions (Hutchinson, 1968a; Rice and Rosengren, 1968) and, thus,
used as a fracture criterion when plasticity induced effects are significant.

If the SSY approximation is assumed, the J-integral and stress

intensity factor for Mode II are related by

- 2 ;
Jy = £ Ky for plane strain,

2.7

Ju= %an for plane stress.

2.2. Irwin’s Plastic Zone Correction

Consider crack of length a subjected to in-plane shear by stresses T, at
infinity (Fig.2). The presence of the plastic zone of size rp ahead of the
crack tip can be taken into account, according to Irwin (1960), by
increasing compliance of the cracked body. To introduce plasticity, an
cffective crack of length aeff=a+3, is considered (Fig.2) with the stress
intensity factor equal to Ky .. Following the SSY approximation, the stress
at a distance x>9; ahead of the effective crack tip is expressed by
Try = Kypeet
2ax

The distance 82 is found by equating Txy = Ty (with Ty be the yield stress in
shear)

Equilibrium condition (equality of areas §, and §, in Fig.2) leads to

rp = 24 [ 52 Kiett - 1 (KiLetr)?
P
2 Ty T Ty

B A




The SSY requirement 1y « a is equivalent to Ky .~K|; and. thus. one can

finally find
I (Kiy* :
r, =={=4 (2.8)
=LKy
Formula (2.8) may be applied to approximate assessment of the
plastic zone size ahead of the crack tip in Mode II both in plane stress and

plane strain. Indeed. analysis of plastic constraint factor (p.c.f.) (Broek.
1987) results in

pcf. = 1/N3
for both plane stress and plane strain conditions, expecting r,(6=0) be
independent of the stress state. Note that this feature of the crack tip
plastic zone behavior in Mode Il difteres substantially from that in Mode I
For the latter an effective yield stress in plane strain is three times of that
in plane stress (Broek, 1987). Further analysis of Irwin (1960) has
revealed the ratio of p.c.f. values for plane strain and plane stress be equal

to V8 which leads to the following approximate assessments
_1 (K[)3 : .
=== in plane stress.
x Oy

r, =:1——(£I-)‘ in plane strain.
Jr Oy
As a result. the area of plastic zone for Mode I in plane strain is one order
smaller that in plane stress. In contrast. plane stress/plane strain
transition does not affect significantly the size and area of the crack tip

plastic zone in Mode IL
2.3. The Dugdale Modei

This model has been originally applied to approximate evaluation of the
plastic zone size ahead of a Mode [ crack tip in plane stress (Dugdale,
1960). With notes made above, th>re is no significant difference in plastic
zone size for Mode II crack in plaae stress and plane strain.

As in Irwin's approach. the effective crack length a.g=a+r1; is
considered under actual load or under stresses Tgp,; applied to crack
surfaces, as it follows from the superposition principle (Bueckner, 1958).
At the surfaces of the effective crack. in small vicinity of its tip, 0 £r<71,,
compressive stresses -Gy (for opening mode crack) or shear suresses -Ty
(for in-plane shear mode) are applied to restrict respectively crack opening
or sliding. The length r, which is associated with the plastic zone size is
determined from the condition of no singularity, i.e. Kg=C. For a crack in
Mode Il it implies that

Kua'l’ Kﬂb=0‘
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where Kyp;, and Ky, are stress intensity factors for the effective crack
under actwal stresses ‘Ea,,p:(mdcx "a") and stresses -Ty acting within the
distance r, at the ctack tp (index "b").

\lakmg use of rcrerence solutions for stress intensity factor (Tada er
al.. 1973; Savruk. "988), one can find 1 for some crack geometries in Mode
Il:

(1) Through crack of length 2a in an infinite plate:

™o = sec (E tml) -1 (2.9
a 2 1,

(2) Semi-infinite crack in an infinite plate:

rp o (Tappf/Ty)? (2.10)
a 1-(tapp/ty)?
Here the plastic zone size is normalized by the crack length, which is finite
for a physicai crack.
(3) Edge crack of length a in a semi-infinite plate.
In this case the size of plastic zone depends on the applied load by the
following relationship

Tappl _ 2 a (2.11)
y 1.1215¢m (a+rp)

with
1
I(Z) = j (-1 12{ 1+(1-12)(0.2945-0.391 2n2+0.76851*-0.994 21 6+0.509473) }m

s

In deriving eq.(2.11) Green’s function for Kj; obtained by Hartranft and Sih
(1973) is used.

Note an important difference in results following from Irwin's and
Dugdale's models. With the dimensionless parameter R; defined as

(fy)z

the Irwin solution yields

Rp=~
R

with constant Rp-value for any load level, t,,,/ty. and independent of
crack geometry. In Fig.3 comparison is made of Dugdale’s and Irwin's
solutions for Rj at a up of a semi-infinite crack in an infinite plane and an
\ edge crack in a half-plane. One can see that Dugdale's solution strongly
r depends on the stress level, while Ry-values for different crack geometries
nearly coincide. More realistic prediction of the plastic zone size based on

Dugdale’s model, comparing to Irwin's solution, has been noticed by Broek
(1987) for the Mode I conditions. '

Both Irwin's and Dugdale's approaches allow for determination of r
only ahead of the crack tip. To find the shape of plastic zone, ie. 1, as a
function of the polar angle 6, the linear-elastic stress field in the form of

\
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solution (2.2)-(2.4) and appropriate yield criterion can be emploved within
the SSY approximation. The yield criterion is usually expressed as the
Huber-Mises condition.

(61-02)7 + (021=03) + (G1~6) = .-.c\.,z with cyz\i 31y . (2.12)
or the Tresca condition,
214, = max { |6;~03] . [62-03] . [o:-01} } = 0y with Oy=21y (2.13)

In what follows. some approximate solutions for the plastic zone at the
crack up in Mode II are considered which are based on yield criteria (2.12)
and (2.13).

2.4. Plastic Zone Geomerry in Mode 1l Based on
the Asymptoric Linear-Elastic Stress Field

Consider a crack of Mode Il in plane strain. Making use of the Huber-Mises
vield condition (2.12) and expressions (2.4) for principal stresses, one can
find the following equation governing the plastic zone geometry near the
crack tip

ry0) = L (K
67t \ Ty /'

24
-
=

-
2

.
(Kuy| (2.14)
i

[P
o)

- S’Isinze ~ dv(]-v)sin

pl
19|

| EP————

If the J-integral instead of the stress intensity factor is emploved to
characterize the crack tip stress field. then e¢q.(2.14) takes the form

p(e)z.—.l_.._._...._..éi- +S.:

. sin:G - 4\'(1—\')sin:
6n(l-v?) 1\3 L

(2.14a)

19| @
!

- e

oD

| VOV |

with Jy; and K|; being related by eq.(2.7).
When the Tresca yield criterion (2.13) is used. it is necessary to note
that according to egs (2.4)
0-<0y. 0-<03;
at the same ume one of the conditions
Gy >03 Of 01<03
must hold depending upon the values of v and 6. Thus, the yielding occures
if one of the following conditons is sausfied:

1 1
—(g; -0 =% of — (03~0a)=7T
;% 2) = Ty 5 (O3 =Ty

These result in

with
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o = —L(_Ifﬂjz (1 —% sin”9)

2n Ty
(2.15)
1 =-L(K“T [«[1 (3/4)sin’0 + (1-2v)sine ]
8n Ty 2
or, in terms of the J-integral,
1 Juk
r (1 == sin 6)
PR 12 4
(2.15a)
1

_— 3/4 1-2 .--'
Ip1 = 8r(1. v) tY [\ﬁ( )sm 6 +( v)sm2

The results of calculations of the plastic zone shape in plane strain
based on the Huber-Mises and the Tresca yield criteria, eqs (2.14) and
(2.15), are presented in Fig.4 for Poisson's ratio ranging from O to C.5.
(Since the plastic zone is symmetrical with respect to the crack line, only
its variation at 0 ¢ 6 ¢ m is analysed throughout this report.) The Huber-
Mises yield criterion predicts (Fig.4a) a smaller plastic zone size ahead of
the crack than behind the tip, with the condition ry(6=0)=rp(6=x) valid only
at v=0.5. One can conclude from Fig.4a that only slight differences in the
plastic zone shape ahead of the crack tip exist with variation of Poisson's
ratio; also, if v>0.3 the plastic zone is nearly symmetrical with respect to
the y-axis (8=n/2). The Tresca yield criterion predicts (Fig.4b) symmetrical
plastic zone shape with respect to the y-axis for all v-values greater than
0.3; this case corresponds in Fig.4b to the curve with v=0.33. If v<0.3, only
slight dependence of the plastic zone shape on Poisson's ratio in the range
of polar angle from about 2r/5 to ® is observed.

In accordance to eqs (2.4) for principal stresses, the plastic zone
geametry in plane stress can be obtained from eqs (2.14)-(2.15a) putting
Poisson’s ratio equal v=0. Thus, the curves in Fig.4a,b corresponding to v=0
can be considered at the same time as plane stress solutions.

Since the stress intensity factor, K, is proportional to the applied
SUress, T,pp;. the plastic zone size in formulae (2.14) and (2.15) is

proportional to (Tappll’ty)z. Consequently, decreasing the stress level (due to
increase of ty with Typpi=const or decrease of t,,, with ty=const) leads to

diminishing the plastic zone proportionally to (tappllty)z. without any
changes in its shape. This conclusion is in contradiction to the finite-
element results by Banks-Sills and Sherman (1990) which demonstrate
changes in the shape of plastic zone with increasing load level; namely, a
significant decrease in the ratio of ry{8==) to rp(0=0) with increase of the
load level has been observed.

e L
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2.5. Influence of Non-Singular Terms in the Elastic Crack Tip
Stress Field on the Plastic Zone Geometry

The SSY approximation, as discussed at the beginning of this chapter, is
valid only in a limited range of the level of applied load, Tapp/Ty. Larsson
and Carlsson (1973) and Rice (1974) have found that neglecting non-
singular terms in the series expansion (2.1) of the stress field near a crack
tip leads to significant errors in evaluation of the plastic zone size. For

Mode 1. a two-parameter crack tip field characterization has been
suggested in those papers

O o) =
O B0 = L= O
with Tyx =T = 0, Tyy =Ty, = 0 (Williams, 1957; Irwin, 1957; Kanninen and
Popelar, 1985). The T-effect has appeared to be different for various
geometries of cracked specimens resulting in different configurations of
the plastic zone (Larsson and Carlsson, 1973). At the same time, no T-effect
on the J-integral has been found by Rice (1974). Another important piece
of information which follows from Rice's (1974) analysis is that, when T-
effect being taken into account, deviation of the plastic zone size from the
SSY solution of Irwin (1960) is proportional to o /oy , while the

difference is proportional to (cappl/cy) 2 with T-stresses being neglected
(e.g., Dugdale's model). Thus, the two-parameter solution of Larsson and
Carlsson (1973) and Rice (1974) predicts more rapid increase of the plastic
zone size with the load level than previous models. With T-effect taken
into account, the boundary layer formulation has been modified and some
important corrections to elastic and elastic-plastic crack tip fields have
been obtained for both pure Mode I and mixed Mode [-II conditions
(Larsson and Carlsson,1973; Du and Hancock, 1991; Betegon and Hancock,
1991; Du er al., 1991).

To study the effect of non-singular stress components on plastic zone
behavior in Mode II, let us represent the crack tip stress field as follows
(Williams, 1957; Irwin, 1957; Kanninen and Popelar, 1985)

K, —

o;j(r8) = —L zij(e)*"rij(e)*z“m\/ r AY,(8) +... (2.16)
N 2xr \f;I !

where Zij (8) functions are determined from eqs (2.2),(2.3). To specify

functions Tij (8) and ‘{’U(B), consider formulation of the plane problem in

terms of Airy's stress function of complex variable Z = x + iy = re '8,
Following to Kanninen and Popelar (1985), one can write

G + Oyy = 21Q@+ Q@] (2.17)

x —2ity =2020"@+ 0" @1 ,
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where Q(z) and w(z) are holomorphic functions, the overbar denotes the
complex conjugate. For Mode II, the stress function is an odd one of the y-

coordinate, and Q and ' take the form (Kanninen and Popelar,1985)

Q(z) =iaz" |, @'(z) =ibd™" (2.18)

where a,b and A are real constants to be determined from the boundary
conditions; A>-1.
After substitution of eqs (2.18) into eqs (2.17), one can find

Oy + Oy = ~4a0+1) I sin 26, (2.19)

O,y =ity = -(O+1) r* { (2a+b)sin A6 + a\ sin (1-2)6
+il ak cos (A-2)8 + bcos 181 } (2.20)

For traction-free crack surfaces, eq.(2.20) yields the boundary conditions
(2a+b+ar) sinAn=0,
(aA+b)cosAn =0, (2.21)
which result in eigenvalue solutions of the boundary value problem as
sin Ax =0 or cosAn=0,
or, equivalently,
A=n22 with n=-1,0,1,2, ...

For the first eigenvalue, A=-1/2, eqs (2.19)-(2.21) lead to the
singular stress field given by eqs (2.2). The second eigenvalue, A=0,
corresponds to the case in which all stress components vanish, i.e.

Tix =Ty =Ty =0 (2.22)
Thus, in contrast to Mode I, the crack tip stress field in Mode II does not
contain constant value terms (T-terms).

Substituting A=1/2 into eqs (2.19)-(2.21), one can find ¥-terms:

. 0 20
b Y = sin— (Z +cos™—) ,
x 2( 2)
¥,y =-sind cos’ 2, (223)
6 .28
b 4 =c¢0s— (1 +sin”" =) ,
xy 2( i 2)

or, in polar coordinates,

¥, = Sin% 2+5 cos—g— cosgz-g) ,
\ Wgg = -Ssing cosg c:os%g . (2.23a)
5 38 3 e

h S = C080 COS— - = COS—-
2 2 2

2

For certain geometry and loading conditions the amplitude A of non-
singular ¥-components of the stress field (2.16) can be determined from
results of numerical treatment of a boundary value problem. For example,

| |
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by analogy with approach of Larsson and Carlsson (1973), one can write

A =iim__, H 1 U™ (1,8=0) - 1,,PLF (r,6=0) ]

T Tappl

where rx)f‘“ and txyBLF are stress components for the actual geometry of a
cracked body and for geometry corresponding to the boundary layer
formulation with one-parameter (Kp) characterization of the crack tip
fields.

An approximate assessment of the Y -stress amplitude can be
obtained for particular crack geometries as follows. Consider a plate of
width W containing an edge crack of length a; let H=W-a be a ligament size.
The plate is subjected to shear stresses 1, acting parallel to the crack

line. With terms of order r! be omitted in eq.(2.16), the equilibrium
condition yields
H

J' Tyy (r,0=0) do = Tappl W,
0
and, after integrating,

A:i W__.._I.(IL .2._)
2 H Tappl \Jn:H

Making use of conventional representation of the stress intensity factor in
the form

Ky =Yy Tappl \] na
where Yy is a geometrical factor, we get finally

3, W /2a
A=2( X oyl 2.24
2( H "N\H ) (224

Consider two examples of calculating the non-singular stress term
amplitude for different crack geometries in Mode II.

(1) Edge crack of length a=H=W/2 in a plate.
According to results published by Tada et al. (1973),
Yp = 1252,
and formula (Z.24) yields
A =0344
(2) Semi-infinite crack in an infinite plate.
This example is a limiting case of the previous one with a— o0 . The
geometrical factor equals (Savruk, 1988)

Yn =%— ,
4
and one can find from eq.(2.24)
A =109

- N
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| For the latter geometry an analysis of the plastic zone evolution with
variation of the stress level is performed below. The Huber-Mises yield
condition (2.12) can be rewriten in the form

% (O Oyy P+ (Oyy, - 67 + (6,7 6,071+ 31,2 =3¢, (2.12a)

or, equivalently, for plane strain conditions

(1 —v+\/2)(cn+c$y},)2 ~3(o,..0O

2
o Oyy ~ Ty ) =31¢ (2.12b)

As it is mentioned above, the yield condition for plane stress may be
derived after that for plane strain, eq.(2.12b), putting v=0.
Introducing dimensionless parameters
o= o;/ty » R=r(ty /Kp?,

the stress components and the yield criterion are of the form

Gii(R.6) = ——— X;;(0) + A Yy (Cowl)2 \22R ;;(0) , (2.25)
27R Ty
(1 ‘V+V2)(8xx +ny )2 - 3 (Gu ny - t;y2)=3 (226)

Equations (2.25) and (2.26) predict dependence of the dimensionless radius
of the plastic zone,

Rp = rp(TY /Kn) 2 .

on the applied stress level; this conclusion is in agreement with the results
of Larsson and Carlsson (1973) and Rice (1974) on Mode 1.

The closed form solution of eqs (2.25) and (2.26) for R, is rather
complicatea, variation of Rp(0) has been derived by numerical treatment of
eqs (2.25) and (2.26) for different stress levels and two values of Poisson's
ratio: v=0 and v=0.33. Results for both plane stress (v=0), Fig.5a, and plane
strain (v=0.33), Fig.5b, indicate significant change in the shape of plastic
zone as compared to shapes derived from the model with one-parameter
characterization of the stress field near a crack tip (Fig.4). The present two-
parameter solution predicts more rapid growth of the plastic zone ahead of
the crack tip than behind it. With increasing the load level, the major
plastic zone area concentrates ahead of the crack tip, which is more
\ characteristic of the plane strain case. For the latter the riisuc zone hight
ahead of the crack tip is larger that behind. These features of the plastic
zone behavior at the crack tip in Mode II differ from those predicted by
the one-parameter model (Fig.4) and agree with the finite-clement results
by Banks-Sills and Sherman (1990).

Note that previous solutions for the plastic zone geometry do not

incorporate Irwin's correction for plasticity. Since conditions o, = o, =0, !

.
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T,y = 0 are hold at 8=0, Irwin's approach is directly applied to evaluation
of the plastic zone size ahead of the crack tip. This results in the value of
rp(9=0) twice larger than predicted before (Figs 4,5), while the values of
rp(6=mn) and the plastic zone hight do not change. It is briefly discussed in

Chapter 6 which assessments of the plastic zone size and shape are more
realistic.

2.6. Stress Intensity Factors for Cracks Subjected to In-Plane
Shear Loading

Within the SSY approximation, the size and shape of plastic zone near a
crack tip are expressed via the stress intensity factor. Some reference Ky-
solutions for plane crack problems are summarized in this section. Note
that in stress intensity factor analyses actual boundary conditions are often

, formulated, according to the superposition principle (Bueckner, 1933), in
terms of self-equilibrium stresses applied to crack surfaces. With such
transformation the formulation of a boundary value problem is simplified
and some efficient techniques for calculation of the stress intensity factors
can be employed (e.g., Green's. or weight function, method).

(1) Central crack of length 24 in an infinite plate (Fig.6.1).

For arbitrary stress distribution on crack surfaces, t(£), stress intensity
factors at right (+) and left (-) crack tips are determined as follows (Savruk,

1988)
1 - "
Ki = W&V (@ +8)/(a - &) dE
=g
a
Ki =— [ e (@-8ia+ 8 az (220

Vra _g

In the case of constant stress distribution, (&) = 15 = const, eqs (2.27) yield

Ki=Ky= to‘\lna (2.28)
If a pair of forces +Q acts at points (b,0*) and (b.0-) respectively, the stress
intensity factors are

Kﬁ:&—_\l (a+b)(a-b) , Kg= NN N (a-b)/(a+b) (2.29)
f —
\N®a \ na
For constant stresses t,, applied near the crack tip regions, b€ |ta (as
in Dugdale's model), one can find

Kyt =-21;t°‘\/1:a (% - sin-t s) (2.30)
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(2) Periodi f lel cracks in_an_infini late (Fig.6.2),

Cracks of length 24 with a distance d between cracks are considered. The
Kp-solution for uniform stress distribution, 1o » on crack surfaces (or

uniform remote stresses T, ) has been derived by Savruk (1988):

Ky =40 K(mi’;—’“) \ﬁam) :h(”T") (2.31)

T
with A=2a/d, and K is the complete elliptical integral of the first kind. The

solution for an arbitrary distribution of shear stresses 1is rather
complicated and may be found in Savruk’s (1988) book.

Stress intensity factor for an arbitrary stress distribution is determined as
follows (Panasyuk et al., 1976):

_,\/2 w®)
K= RJ@dg (2.32)
4]

The function t(£) is assumed in such a way that the integral in eq.(2.32)
takes a finite value. If the region near crack tip, 0 ¢ & < a, is subjected to
constant shear stresses 14 €q.(2.32) yields

Kn=2‘/2 o \wa (2.33)

T

In the case of a pair of shear forces +Q acting at points (»,0*) and (b,0-) one
can find

K;=QA4[2 2.34)
nb
@ Pesiadi Ty

An approximate solution of this problem has been derived in a closed form
by special approximation of a kernel of the singular integral equation

(Savruk, 1988)
Ky =4 /Q 1) d (2.35)
TNd f Vi expomt/d)
0
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(5) Edge crack of finite lenoth ¢ in a half- Fie.6.5

Several approximate solutions of this problem have been derived in the
literature. According to Panasyuk er al. (1976), the stress intensity factor
for an arbitrary stress distribution is of the form

Kow | 200%) T" (8) dE
n= —_—
I 0 \jaa _ ia
with a=272/(x2-4). For the stress distribution of polynomial type, t(§) =
1o (E/a)" , €q.(2.36) is reduced to

/2a F({(a+1)/2)
K, = koA 8 S A Sl 2.37
n= o a '(n/2+1) ( )

, Making use of the alternating technique, Hartranft and Sih (1973)
have found Green's function which is the value of the stress intensity
factor due to a pair of shear forces *Q acting at points (¢,0*) and (¢,0") of
crack surfaces respectively

k=22 [1+(1-¢) (02945 - 0.3912€2 + 0.7685¢*
Ta

(2.36)

~ 0.9942¢% + 0.5094¢%) ) /\/1-e2 (2.38)

with e=c/a. The stress intensity factor of an arbitrarily loaded edge crack in
a half-plane can be calculated by integrating Green's function (2.38) over
the crack length. For example, for constant shear stresses one can get

Ky = 1.1215 14 \ ra (2.39)
At =0, eq.(2.38) yields
Ky = 1.2945 22 (2.40)
a

which is the solution of the problem when two opposite shear forces Q are
applied at the crack mouth (£=0, n=%0).
If a tensile load P parallel to the &-axis is applied to a half-plane

boundary in the point (0,b) (Fig.6.5), the corresponding value of the stress
intensity factor was derived by integrating (2.38) (Rooke and Jones, 1979)

Ky=- =% p (1.294 - 1.184% + 5.442¢2 - 28.14¢> + 41.80¢*
] ra
- 22.380° + 3.162¢5) (2.41)
with {=b/(b+a).
_ Freund (1978) has solved the problem with prescribed displacements
i of a half-plane boundary
o ug =8 =const for £=0, n>0,
| ug = -3 = const for $=0, n<0 ;
the result is

\
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Kns_g_ﬂﬁ__ (2.42)
(1+K)'\/n~a_
where p is the shear modulus, x=3-4v for plane strain and x=(3-v)/(1+v) for
plane stress conditions.

(6) Edge crack in a_ half-plane with a stiffened edge under uniform
tension (Fig.6.6).

Let a rigid stamp of length b be joined with a half-plane edge as shown in
Fig.6.6. The force P parallel to the crack line acts on the hailf-plane through
the stamp. This problem has been solved by Hasebe (1979, 1981) by
conformal mapping technique. Two types of boundary conditions were
studied: (a) loading with no stamp rotation and (b) loading with stamp
rotation at an angle @; corresponding results are presented in the table
below (K| -values are given over the lines, Ky - values are given below the
lines).

Ky /(PN /a) Ky AoV ra)
alb
K K
3.0 25 2.0 513 1.0 3.0 25 20 513 1.0

0.002 0.020 0019 0.017 0015 0.007
0.004 0.005 0.006 0.006 0.006

0.001 0681 0709 0715 0692 0454
0.178 0231 0.294 0341 0413
0.1 2089 0084 0077 0071 0,053 0238 0258 0285 0308 0.379
0.049 0.050 0.049 0049 0.044 0228 0.253 0285 0313 0.392
0.4 4 4 4 0097 0,110 0128 0145 0202
0.115 0.114 0.112 0.111 0.105 0.158 0.178 0205 0229 0.307
0.8 0207 0206 0205 0205 0203 0038 0043 0050 0057 0,080
0.184 0.184 0.183 0.183 0.181 0.100 0.113 0.131 0.147 0200
1.0 Q224 0224 0223 0223 0223 0024 0027 0032 0036 0051
0212 0213 0213 0.213 0212 0.080 0.09 0.105 0.118 0.161
53 0251 0251 0251 0251 0252 0005 0006 0006 0007 0010
0.279 0280 0281 0282 0.284 0.033 0.037 0.043 0.048 0.065
2.5 0260 0260 0260 0260 0261 0001 0001 0001 0001 0002
0323 0324 0325 0325 0327 0.015 0.016 0019 0.021 0.029

10. 0 00 0 0

Q263 0263 0263 0263 0263
0.3%0 039 0391 0391 0.392

0.001 0.001 0.001 0.001 0.002

Y




]

In both cases the mixed Mode I-Il crack tip deformation takes place. When
the stamp and the crack are of equal length, a/b=1, in case (a) the absolute
values of K; andKy are close. while in case (b) the ratio |Ky/K{]is of the

-

value about 3.

(7) Periodic array of parallel edge cracks in a half-plane (Fig.6.7).

Numerical results of solving this problem by the method of singular
integral equations (Panasyuk er al.. 1976) are summarized below for the
case of constant shear stresses t,applied to crack surfaces:

ald 0. 0.2 0.4 0.6 0.8 1.0 2.0 3.0

—_—
Ky/(zg ¥ma) 11214 11320 12072 13291 1.4575 1.5797 20941 25075

{8) Laver of finite length bounded to a half-space (Fig.6.8).

This problem has been solved by the method of singular integral equations
(Chantaramungkorn and Keer, 19735). Both the layer and half-space are
assumed to be of identical material. Constant pressure. p, acts parallel to
the crack plane. Numerical K; and Ky values are presented in the table
below for two crack tips (A and B):

c d Kn(A ) Kﬁ(B) KI(A ) KI(B)

h < pync pN =c pNwc pVnc

0.5 1.25 0.648 0.458 1.349 -1.309
1.0 1.25 0.367 0.188 0.398 -0.325
1.50 0.385 0.198 0.290 -0.321

2.00 0.387 0.200 0.390 -0.320

3.00 -’ 0.200 0.390 -0.320

20 1.25 Y 0.066 0.188 -0.076
30 1.25 0.185 0.033 0.145 -0.033

Note that practically for all values of geometrical parameters studied, the
condition |KyKjj < 1 holds.
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(9) Edge crack in 3 strip (Fig.6.9),

Approximate formula for the stress intensity factor at constant shear
stresses, Ty, applied to crack surfaces is given by Tada er al. (1973):

Ky =1,V 1a fo("\%) .

fo%) =

which is said to be accurate within 2% for O ¢ w 1. In the case of a pair of '

_a 2.4
1 - (2.43)

shear forces Q acting at the crack edge (see Fig.6.9) an expression for Ky is
of the form (Tada et al., 1973)

; _2Q (130 0652 + 0373 24 02804 3 \/_1
| Ky \/_;[ 30 065(2) + 037(2) 2+ 028231/ [1-2  44)

which is accurate within 1% for 0 ¢ %s 1.

Making use of an asymptotic interpolation technique, Cheng and
Finnie (1990) have derived the stress intensity factor for an arbitrary

stress distribution, (&) = 14 T(E), as follows:

Kg=t,Vna fo(—\%) f(—\%-) , (2.45)

with fo(%) to be determined from eq.(2.43), and

a/W
ay_ (20 - (1ogy 2 cos (BU=a/W)\ e @
f(w) fa&,[l (1 é)nc [(1 g)a/W)H(g )]_(i)d?é

(2.46)

HES) =1 - ?;ga(l 25802 1 &)

(10) Edge crack in a threc-point bend specimen (Fig.6.10),

Mixed-mode stress intensity factors, K; and Ky, for an asymmetrically

\ located edge crack in a three-point bend specimen have been calculated by
the boundary collocation method (Ke er al., 1978). Dimensionless functions

F;= K /IM/GW *?3)] and Fy= Ky [Q/tW VY2)] are summarized in the table
below with F, being above the line and Fp being below the line (M and Q '

are the bending moment and shear force in a cracked section; t and W are
the specimen thickness and width):

——
PP .

§5' ;



3]
[95]

2B/L
a
w
0 16 26 36 46 56 1112
0.40 171 850 853 836 833 850 _8.30
0 1.032 1400 1350 1298 1276 1.644
0.45 286 Q967 972 238 948 935
0 1.142 1562 1488 1466 1464
0.50 10.27 1148 1150 11.60 11,15 1159 11.53
0 1410 1.364 1.840 1664 1.660 1.760
0.3% 1211 1330 1360 1303 1290 13.46.
0 1.583 1980 2.050 1976 2.100
0.60 1447 1425 1465 1491 1488 1474 14.5
0 2348 2248 2276 2320 2294 2.090

The value of K; is found :0 be much higher than K .
(11) Edsge crack in four-point _hen imen (Fig.6.11

Pure Mode II crack tip deformation is expected in the loading scheme
presented in Fig.6.11. This specimen has been employed by Tohgo and Ishii
{1992) for measurements of the fracture toughness, Jy. . The suess
intensity factor has been found from finite-¢lement calculations:

K;=131 ENwa . F=2p (2.47)
Wi 8
where W and r are the specimen width and thickness. respectively. Note

that varying distances in the loading frame, combined Maods I-1I conditions
can be obtained with various mixity factor (Tohgo and Ishii, 1992).

(12) Edge crack in a cantilever beam (Fig.6.12).

Stress intensity factors, K; and K . have been found by the body force
method (Murakami, 1980). Dimensionless functions

—— -

Fy= K GTLIW2N xa |, Fy= Ky [(TIWW na |
(T =19 W) are presented below for different vaiues of the crack depth:

i
Gy



——- .

alW 01 02 03 04 05
F, 094 1.00 1.2 125 136
Fg 043 068 094 1.17 136

Since L/W>1, then
—I-(lz: f—‘-(% » I,
i.e. Mode 1 deformation is predominant for this specimen.

(13) Edge crack in a double cantilever beam (Fig.6.13).

A double cantilever beam is considered with different cross sections,
A|=thand A,=thy , where ris the beam thickness (Fig.6.13). A pair of
forces. P. is applied to the beam edges. The stress intensity factor is
determined as follows (Tada, 1974):

Ky=C—L (2.48)
N2rA
with
A= A A ,
A +A;
C=1 for plane stress,
c=-1 for plane strain.

\jl—-v2

If Ay=A, and a horizontal displacement & of the beam is given, eq.(2.48) is
reduced to the following:

Ky=C =244 (2.48a)

(14) End- imen i .
Fig.6.14

This type of specimen has been employed by Mall and Mol (1991) in Mode
11 fracture toughness testing of ceramic composites. In preparation phase,
the specimen is notched on one end and subjected to Mode I loading to
create a sharp crack of length @ which is shown in Fig.6.14. The fracture
toughness is expressed in terms of the critical energy release rate as
follows:

- Tap g e



(2.49)

where P is a critical force, r is the specimen thickness. C is the specimen
compliance. An approximate formula for evaluation of the C value is given
by Russel and Street (1982):

_1+1.5(2a/L)3 - e

C= TENAIL) (2.50)

However, Mall and Mol (1991) demonstrated that the real comliance
function differs essentially from that determined by ¢q.(2.50). and thus C-
calibration curves are to be found experimentally for certain specimen
geometry and test conditions (temperature eic.).

l\)

(15)

The stress analysis of this specimen has been performed by the finite-
element method (Hoyniak and Conway, 1979). Two types of boundary
conditions (with and without restrictions on horizontal displacements of
the applied load) and twwo different directions of the applied load have
been considered; these are refered 1o as Cases 1 to 4 in Fig.6.15. In general.
mixed mode type of the crack tip deformation is observed for this
specimen. Figure 7a shows variation of the stress intensity factor K for the
Case 2 of loading found by the finite-element method (Hoyniak and
Conway. 1979) and the boundary collocation method (Jones and Chisholm.
1975), for three values of the characteristic size of the specimen: H = 0.5,
1.0 and 1.5 in. In Fig.7b. both the Mode II stress intensity factor, Ky , and

the mixity factor, § =|Kn|/‘\l szv-Kuz . are presented for different

schemes of loading (after Savruk. 1988). One can conclude that nearly pure
Mode IT crack tip deformation is found for the Case 3.

(16) Punch-through shear specimen (Fig.6.16)

This specimen (cubic in shape) has been applied for fracture toughness
(Kpc) measurements of concrete. i.c. extremely brittle material (Davis er al.,
1985). The calibration of the stress intensity factor has been performed by
the finite-element method. The specimen dimensions in that analysis were:
W = 100 mm, » = 10 mm, H = 30, 40 and 50 mm. Numerical results by
Davis er al. {1985) on the dimensionless stress intensity factor

YII = 2W( W-a-b) K[]

P \/xa

for a larger crack (of length a) are presented in the table below.




a/W Yyfor H=50 mm Yy for H=40 mm Yy for H=30 mm

0.25 4.833 4.151 3.589
0.30 4.802 4.109 3.573
0.35 4.769 4.088 3.550
0.40 4,743 4.071 3.521
0.45 4.690 4.067 3510
0.50 4.394 3.809 3.335
0.55 4.438 3.863 3.405
0.60 4.544 , 3.978 3.484

For prescribed specimen dimensions the opening mode stress intensity
factor was found to be of the order lower than the value of K.

(17) Compact Mode I fracture specimen (Fig.0.17),

This specimen has been designed and employed for fracture toughness
(Kge and Jgo) measurements of perspex (extremely brittle material)
(Banks-Sills and Arcan, 1986) and Al 7075-T7351 (typically ductile
material) (Banks-Sills and Sherman, 1991). The specimen geometry is
presented in Fig.6.17. The load is applied through a special frame so that
no bending moment acts at a cracked section (this is shown schematicaily
in Fig.6.17). The finite element method has been used for elastic and
elastic-plastic analysis of the specimen. An approximate formula for the
stress-intensity factor was derived by Banks-5ills and Arcan (1986). Also
calibration curves for evaluation of the Jy-value are presented by Banks-
Sills and Sherman (1961).

It should be noted in conclusion of this brief review on Mode II
stress intensity factors, that application of cracked geometries shown in
Figs 6.11, 6.14, 6.15 (Case 3), 6.16 and 6.17 allows for pure Mode II crack
tip deformation. For the other geometries mixed Mode I-II conditions take
place with different ratio of K; to K (depending on a geometry and

scheme of loading). It is important tc note than at K; <O compressive

stresses act along a crack line inducing coniact and friction between crack
surfaces; this results in reducing an actual in-shear mode stress intensity
factor and leads to necessity io reformulate boundary conditions. Also, in
the presence of the crack surfaces interaction, the proof of the J-integral
path-independence becomes invalid and application of the J-integral to
ductile fracture analysis is questionable.
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2.7. Some Results on Mode II Fracture Toughness Measuremen:

Some results on determination of fracture toughness in Mode II available
from the literature are summarized in Table 2.1. For comparison purposes,
values of Mode I fracture toughness, Kyjc/Kjc ratio and crack initiation
angle 6;(with respect to the original crack line) are listed.

Table 2.1
. K, .
Reference Material K Kpe #g— 0; Specimen
IC
MPaNm MPaVm (deg)
Banks-Sills and perspex 0.89 63-70 Fig. 6.17
Arcan (1986)
Banks-Sills and Al 7075-T7351 292 54.1 1.85 0 Fig. 6.17
Sherman (1991)
Jones and Al 2024-T4 374 44.0 1.18 =0 Fig. 6.15
Chisholm (1979)
Hoymniak and Al 2024-T4 374 55.8 1.49 =) Fig. 6.15
Conway (1979)
Tohgo et al. (1990) swel SM41A 5007 2057 0.64 0 Fig. 6.11
Tobgo and Ishii Al 6061-T651 15.37 45.21 1.72 0 Fig. 6.11
(1992)
Davies et al. (1985) soil cement 0.42 =( Fig.6.16
Awaji and Sato graphite 7474 0.94 1.09 1.16 67  Center-cracked
(1978) graphite SM1-24 0.31 0.89 1.09 67 disc
Mall and Mol alumosilicate 0.297¢ 0 Fig. 6.14
(1991 ceramic
composite
Suresh et al. Al,O, ceramic 3328 3.2¢ 0.96 Fig.6.11
(1990)

Notes: T The J-integral value, kN/m.
f The Gy value, kN/m.
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3. Plastic Stress and Strain Fields near a Crack Tip
in Mode I

In previous chapter, analyses of the crack tip plastic zone size and shape
are based upon the linear-elastic solution for the stress field. The only
plasticity parameter involved in those analyses is the yield stress, Ty. In
reality, there exists material strain hardening which affects significantly
material behavior in yielding and leads to redistribution of stress and
strain fields.

The dominant singularity at a crack tip in a power strain hardening
material has been investigated by Hutchinson (1968a) and Rice and
Rosengren (1968) (HRR-solution). In those papers, Mode I stress-strain
fields in plane stress and plane strain have been derived for material of
the Ramberg-Osgood type, as well as for perfectly plastic one. Further
studies were devoted to the elastic-plastic analysis of the crack tip fields in

v pure Mode II plane strain (Hutchinson, 1968b; Shih, 1974) and pure Mode
IIT (Rice, 1968b), as well as combined Mode I-II (Shih, 1974; Nemat-
Nasser and Obata, 1984), I-IIl (Pan and Shih, 1989) and II-III {(Pan and
Shih, 1990).

Note that finite-element analyses of mixed-mode crack tip fields led
to some important conclusions: (1) the dominant HRR-singularity derived
originally within deformation plasticity is valid when incremental
plasticity is employed to describe material behavior: (2) in mixed-mode
conditions, there is only slight deviation of the dominant stress field
singularity order from that in the HRR-solution (Pan and Shih, 1990). Thus,
the HRR-solution appeares to be a good approximation of real stress and
strain fields near a crack tip in metallic materials.

In what follows, a brief review of the HRR-solution for pure Mode I
and Mode II is presented. In addition, variation of the dominant stress and
strain fields at a crack tip in Mode II versus strain hardening exponent is
analysed both for plane strain and plane stress.

3.1. Dominant Singularity of the Crack Tip Fields

A plane crack is considered in an elastic-plastic material obeying the Ja-
‘ flow theory. The stress-strain curve in shearing is approximated by the
Ramberg-Osgood equation

l.—.lm(l)" 3.1)

. W YW Ty

' where Ty and Yy=Ty/| are the yield stress and strain respectively, W is the
shear modulus, N is the strain hardening exponent (N >1), a is the material
constant. The plastic deformation is assumed to be incompressible,
independent of the hydrostatic stress component, Gy./3, and, thus, be a
function of the deviatoric stress components, s;;, i.e.

1



where
1+v 1-2v
€= —_— y .
‘c‘i_)" E le 3E okkau’
(3.3)

eP

with
1

The effective stress, o, , and plastic strain, ¢!, corresponding to the J,-flow
theory are
or

o, = V3I,
_ ,3

2 2 2 .3 12
c, 2{%-[(0')“-0'?{},) +(0'yy‘0'zz) +(0,,-0xx) ] + J(tx$+tyg+tzf)} / , (3.5a)
{ -~

or, in explicite form,

Ponl2 e pep
¢ 1 i i
2
or

eP = 4 / % [(e B+ (e, )+ (.00 + 2e, 2V + 26, D + 2(e,°] " (3.5b)

Making use of egs (3.1)-(3.3),(3.5) the following relation is obtained
between the effective stress and plastic strain:

eP=oey (EE)N (3.6)
Sy
with €Y='YY/1/—3~ , Gy=\3 Ty. Since the near crack tip fields with a high level of

plastic deformations are considered. the stress-strain relation may be
approximated by

3 O, \N-1 8;;
&= 55*5‘“{;?) -c;y‘—‘ (3.7

where eqs (3.3) and (3.6) are taken into account.
The order of the dominant stress and strain fields singularity can be
obtained directly from the analysis of the path-independent J-integral
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(Rice, 1968a). Thus, for a circular contour of radius r enclosing the crack
tip the J-integral (2.5) is expressed as (Rice and Rosengren, 1968)

=r _f (W cosé - ojn J )dB (3.8)
-1

Since the value of J-integral is mdependent on r, both terms in brackets of
eq.(3.8) have to reveal the singularity of the form

w~rl, oy %L (3.9)

9x

The strain energy density for a power-law material is expressed as
(Kanninen and Popelar, 1985)

N N+l
W= N _c] 3.10
N+1 *oxy (Gy/ G-10)

Equations (3.9) and (3.10) lead to the following general representation of
stress, strain and displacement fields near the crack tip (Rice and
Rosengren, 1968):

6;(1,8;0.N) = oyK(a.N) 1" 2,.6:N)

6,(r,8:0.N) = oyK(@.N) r "NV 5 9:N)
(3.11)
£;(r.0;0.N) = ey K (aN) 1YY E(0;N)

u(r,8:0.N) = aeyK (@, N) T Ue:N)

where the coordinate functions, Z;,X, ,E;j,U;, and the amplitude of the
dominant singularity, K, are to be determined by solving a boundary value
problem. Note that the same result on the dominant field singularity was
obtained by Hutchinson (1968a) when analysing the first eigenvalue of

corresponding differential equation for the Airy function.
3.2. Formulation of the Boundary Value Problem

For further stress and strain analysis, the Airy stress function ‘¥ is
introduced as follows (Hutchinson, 1968a; Rice and Rosengren, 1968)

¥(r.0) = Krloyd(0) (3.12)
The stress components which satisfy the equilibrium equations are
'y _13¥ 197 d (Lo¥
Ogg=—5 + O +5— . Tg=——
T T Trar e | Y ar (r ae]

or, using eqs (3.11) and (3.12),

Zoa =s(s-1)O, Zr=s0 +09", Zig = (1-3)¢’ (3.13)

e
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with s=(ZN+1)/(N+1).
Substituting stress components (3.13) into the compatibility equation

-1 az -2 328” -1 88” -2 aEre —_—
r —re +r " —L ¢ = _ 2r r—=2) =0,
3r2"€00) 362 9€, ( 26 )

one can find
2 .
d 5 N (Zg-lsrr) - N 3 E?-ISSG——?J_-i(ZN 1Sre) =0, (3.14)
4o N+J (N+1)* N+1ds
where Sj; are dimensionless deviatoric stress components,

Sij =5 - ‘;‘Zkkaij

Note that expressions for %, and §;; are different for plane strain and plane
stress. After certain algebraic rearrangements, one can find for the case of
plane strain

5, = [i_(z,,—zee)”' +352 }”2 .
ZﬁP 0"+-‘-§i—‘—¢f (¢’ )'}”2 (3.15)
4 (N+1)? (N+1)'

and

d‘) \I(N“l"é)} N-1/ 2N+1 -l 4N d N-© )
I, e+ ~ 0} + —(Z, 6} =0 (3.16)
LB (N+1)? { (N+1)* )J (N+1)* d6 ( )

Calculations for the case of plane stress yield

Ze = (err + z"629 - zn’ z:66 3Zr9)”2
(3.17)
2 T . 2
Zﬁ“tb N+l \I(2N+l) o? - NQNtD) ( # 22l , ON 7(¢.)2]1/2
N+ ) (N+1)* (N+1)? N+l (N+1)”

and

(dZﬁ . _N_)[Z?--x 297+ (NF2)EN+D) ¢ﬂ+ N 225-1[4).. (N- l)(2N+l) ﬂ
de* N+l (N+1)° (N+1) (N+1)?

6N d N-1 4
(N+1)? w5 (%79)
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Equations (3.16) and (3.18) are forth-order differential equations for

the ¢ function resolved for the fourth-order derivative, d4¢/d94.

The boundary conditions for the stress function can be formulated
from the following considerations. Since the crack surfaces are traction-
free, Ogg(2m)=T9(2n)=0, or making use of egs (3.13), we get in terms of the
stress function

O(2n) = 0'(zx)=0 (3.19)

It is evident that the stress function is to be an even function of 8 for Mode
I crack problem and an odd function of © for Mode II crack problem. Thus
the boundary conditions are

$'(0) = 6"(0) = 0(x) =9'(x) =0 (3.20)
for Mode I, and

$(0) = ¢"(0) = ¢(x) = ¢'(x) =0 (3.21)
for Mode II.

3.3. Calculation of the Amplitude of the HRR-Fields

Since the boundary value problem formulated in the previous section is
soived, the amplitude K of the dominant singular fields (3.11) is the only
unkncewn parameter. It was shown by Hutchinson (1968a) that the K-value
is exprzssed via the J-integral, the stress function and its derivatives, as
well as parameters of the Ramberg-Osgood equation. Substituting eqs
(3.10) and (3.11) into eq.(3.8) one can find

N+1 J L/(N+1)
J = A0vEvI(N)K , oo K=|—m 3.22
yEYI(N) [ﬂﬁyﬁYI(N)] ( )
with
T

Ny = [ N% N*lcoso - Elfl (U, Z,; + Ug Z,9) coso
i

- [Z,(Ug=U")) = £,6(U+U"g)] sind } do (3.23)

The I-value depends on the strain hardening exponent N, as well as on the
deformation mode and plane strain/plane stress conditions. The
displacement functions and their derivatives obtained from Cauchy's.
equations are

U, = %(N+1) -1 [cp“ +-2ﬁtl—¢] ,

(N+1)2
U, = %(N+1) diia(zg“) [q:" + (ﬁi‘;; ¢]
+% (N+1)zN-1 [¢'" + % q;'] : (3.24)
Vo= My, 43y, Uy =- T2y,

T e Gy
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for plane strain, and
U, = (N+1) TN |:¢..+(N+2)(2N+-1)¢] ,

2(N+1)2
. d N-1 w o (N+2Y(2N+1D)
U, =(N+1) — & Ntz
= L [or s (DN o]
N+1) TN | o (N+2)(2N+1)®.' ‘
+ (N+1) X {q; + —————-—-Z(NH)z : (3.25)

Up= MU, + 353

vo_ 1 eN-PIN-D(@N+1) "
Ug= —g-t IIN=BF) 6 U

for plane stress.
3.4. Numerical Solution of the Boundary Value Problem

As it follows from the previous analysis, derivation of the dominant
singular terms of elastic-plastic crack tip fields ts reduced to determination
of the stress function which is to satisfy the fourth-order differential
equation (3.16) or (3.18) and boundary conditions (3.20) or (3.21)
(depending upon the mode of deformation and plane strain/plane stress
conditions). Thus, the two-point boundary value problem is to be solved.
For this purpose, the fourth-order Runge-Kutta integration scheme and the
shooting method are employed. The latter allows for reducing the two-
point boundary value problem to Cauchy's problem.
For Mode II crack the boundary conditions (3.21) can be
reformulated into the initial conditions as follows
0@ =0, ¢'0) =9,; ¢"0)=0, ¢"(0) = ¢, (3.26)
where @, and ¢, are determined through an iteration process to satisfy the
boundary conditions at O=mw:
o(rn) = ¢'(x) =0 (3.19a)
Here two notions are to be remarked:
(1) Only @, to @, ratio affects the solution of the boundary value

. problem. Indeed, it follows from eqs (3.7),(3.11),(3.13).(3.15),(3.17),(3.22)-
(3.25) that

zi.i Q1 Ze” 9y Elj ~ @y, U; ~ (pg", I(N) ~(p1;‘+1' K~ (pi-l '

and no absolute values of stress, strain and displacement components

depend on @,. Thus, an arbitrary value of @, (or ¢,) may be choosen. In

the present analysis, by analogy with Hutchinson (1968a,b) and Shih
i (1974), the ¢-value is put to satisfy the normalization condition

i Ze,max =1,
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while the @,-value is found by the shooting method to satisfy the
boundary conditions (3.19a).

(2) Both boundary conditions (3.19a) are satisfied simultaneously.
The proof of this fact is given by Rice and Rosengren (1968) and is based
on the proof of the J-integral path-independence (Rice, 1968a). Since the
crack surfaces are traction-free, the following relation is valid at 6= and
for any r-value:

PRSP
or or
and "the vanishing of T,¢ on the crack surface implies the vanishing of Ggg"
(Rice and Rosengren, 1968).

In solving the boundary value problem, no convergence was found for
certain initial values of @2 with the derivative ¢™ tending to infinity. Thus,
an appropriate first approximation function @;=@,(N), both for plane strain
and plane stress, has been derived in numerical experiment and employed
after in the iterative process. The iterative process is stopped when the
following condition is satisfied

=0,

max {|¢(@)| ; [$'(M)|} <3,

with 3=10-4. A step size of 0.45° is found to be the best choise in the
Runge-Kutta integration procedure. Further diminishing of the step size
does not affect accuracy of the solution. Under above conditions, the
convergence of numerical procedure is obtained in two to nine iterations
within the range of the strain hardening exponent 1<N<80, both for plane
strain and plane stress.

The variation of stress and strain fields, Z;; and E;;, at a crack tip in
Mode II for plane strain and plane stress conditions are presented in Fig.8
and Fig.9 respectively (in those figures the index *t” corresponds to “98");
computations were performed for the range of the strain hardening
exponent from N=1.01 to N=80, and the limiting cases may be refered
respectively as to purely elastic and perfectly plastic solutions.
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4. Rate Sensitivity of Material Properties

Three materials with different rate sensitivity of their plasticity properties
have been analysed, and the constants in the Ramberg-Osgood equation
(Ty.o,N) change accordingly as functions of strain rate:

(1) mild steei; the basic data on the rate sensitivity of the yield
stress are available from the work of Campbell and Ferguson (1970) where
steel of the following chemical composition was studied: 0.12%C, 0.10%Si,
0.62%Mn, 0.029%S, <0.004%Pb. Also data of Klepaczko (1969) on technically
pure iron (0.05%C) and Tanaka and Kinoshita (1967) (0.03%C) were used to
study strain rate effect on parameters describing stress-strain relation;

(2) fully annealed titanium alloy Ti6Al4V; the data on behavior of
stress-strain curves at different strain rates are available from the paper
by Maiden and Green (1966); ,

(3) aluminum alloy Al 6061-T6 (1%Mg, 0.6%Si, 0.25%Cu, 0.25%Cr);

, the strain rate effect on the yield stress and stress-strain curves for this
alloy was studied by Maiden and Green (1966), some additional results can
be found in the work of Jiang and Chen (1974).

The behavior of those materials has been analysed for the case of

: -4 3 -1
room temperature and strain rates from 10 "to 107 s .

Figure 11 shows stress-strain curves for technically pure iron

obtained in pure shear at the strain rate range y= 1.31x10-4..55 s !
(Klepaczko, 1969). For this material, the lower (Typr) and upper (Tyg) yield
stresses, as well as the slope of stress-strain curve, are changed
significantly with increasing strain rate. The experimental data of

Klepaczko (1969) on variation of Ty, versus log ¥ are shown in Fig.12a,
corresponding results of Campbell and Ferguson (1970) and Tanaka and
Kinoshita (1967) are also presented. Note that original results of the latter
authors obtained in compression are transformed here to the stress-strain
diagram in shear according to

v =owA3, y=V3e (4.1)

An averaged Typ versus log Y curve is fitted to the experimental data in

. Fig.12a within the strain rate range from 10-4 to 103 sl
Based on results of Klepaczko (1969), Fig.l1, the Ramberg-Osgood
constants N and @ in eq.(3.1), have been found and they are shown versus
strain rate in Fig.12b. It was observed in many studies on mild steel (see,
\ ¢.g., Klepaczko, 1969) that with increasing strain rate the slope of the strain
hardening part of the stress-strain curve diminishes. Above certain level of

strain rate (Y>102s-1) when adiabatic heating is of importance, this part of
the stress-strain diagram shows a negative slope. Since it is impossibie in
the present analysis to model "negative” strain hardening, it is assumed

1 ! that the value of N tends to infinity at high strain rates (Y >102 s-1). This

et . - SR ot B i e e R P e S e S
e A A




36 §
case corresponds to the model of elastic-perfectly-plastic material. With

this assumption taken into account, the N versus log Y curve in Fig.12b is
extrapolated to Y=103 s-1. An appropriate extrapolation of the constant O

versus log Yy is also shown. Based on results presented in Fig.12a,b, one can
conclude that there is strong effect of strain rate on the Ramberg-Osgood
parameters for mild steel. Both the lower yield stress, Ty, and strain

hardening exponent, N, are rapidly increasing with log 7y, while the value of
o is slightly decreasing.
Figure 13 shows test data of Maiden and Green (1966) obtained in

compression for titanium alloy Ti6Al4V in the range of strain rate € =

4x10-3...20 s-1, or after transformation according to (4.1), ¥ = 6.9x10-3...34.6
s-1. The strain rate dependence of the yield stress, Ty, for this alloy is

shown in Fig.14a. Here the yield stress in shear 1s found as Ty = 0‘0_2/‘\13.
The Ty versus log Y curve is extrapolated to two extreme limits yY=10-4s-1

and y=103 s-!. Variation of the constants in the Ramberg-Osgood equation
is presented in Fig.14b. One can conclude that no much effect of strain rate

on & and N is observed. Both the N versus log Y and o versus log Y curves
are approximated by straight lines and, thus, extrapolated within the
whole range of the strain rate considered (Fig.14b).

Test data on Al 6061-T6é (Maiden and Green, 1966) in compression at

the range of strain rate £=9x10-3..910 s-! or. equivalently, ¥=1.56x10-2...
1.58x103 s-1 (Fig.15), reveal no strain rate effect on the stress-strain curve.
The curve is approximated by the Ramberg-Osgood equation (3.1) with
Ty=175 MPa, N=4.3 and a=1.54. Similar results but with a small rate
sensitivity of the yield stress, Oy, have been reported for the same

mater:al by Jiang and Chen (1974), within the range of strain rate
£=1.6x10-3..210 s!, or'y =2.8x10-3...360 s-!. Their data are presented in

Fig.16 as Ty versus log ¥ and show a linear dependence of the yield stress
versus logarithm of strain rate.

It is important to note that in Fig.15 the engineering stress-strain
curves which are presented with no account for adiabatic heating at high
strain rates. In fact, if the effect of adiabatic heating is considered, an
aluminum alloy reveals strain rate sensitivity of its mechanical properties.

Note also that at high strain rates ( Yy >103s-1), the 0.2% proof stress of
aluminum alloy becomes rate sensitive and its behavior is similar to that of
yield stress observed for steels.

e s R et . S —————
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5. Strain Rate Effect on Evolution of the Crack Tip
Plastic Zone for Structural Materials
Via SSY Approximation

In the previous chapters rate sensitivity of mechanical properties of mild

steel. titanium and aluminum alloys in the strain rate range ¥=10-4...103 s-!
has been discussed, as well as the two-parameter model of the plastic zone
near a crack tip in Mode II has been analyzed within the SSY
approximation. In that model both size and shape of the plastic zone
depend strongly on the ratio of the applied shear stress to the yield stress,
Tappl/Ty, as well as on the crack geometry specified by the value of the
stress intensity factor, Ky. In the next part the analvsis of evolution of the
plastic zone near the crack tip in Mode II with parametric variation of the
strain rate is performed for different materials.

The crack geometries. which are of practical interest, are: (1) semi-
infinite crack in an infinite plate and (2) finite length edge crack in a strip.
The first geometry represents the limiting case of a very large crack which
is typical for problems arising in geomechanics, pipeline safety assessment
etc. The second one corresponds te specimen geometries used in fracture
toughness tests in Mode II (Banks-Siils and Arcan, 1986; Banks-Sills and
Sherman, 1991; Davies er al., 1985: Kalthoff and Winkler, 1987; Maccagno
and Knott, 1992; Mason er al., 1992; Nishioka er al.. 1991; Tohgo er al.,
1989; Tohgo and Ishii, 1992). The geometry used by Kalthoff and Winkler
{1987) and Nishioka er al. (1991} with crack length ¢ = 50 mm and
specimen width W = 100 mm is studied in the present work.

Analysis of the evolution of plastic zone with strain rate is carried out

for constant value of applied stress. i.e. Typpi(Y)=const, while the yield stress
as a function of the strain rate is involved. Thus, the load level is

characterized by the ratio of Tapp to the yield stress Tys in test with y=10-4
s-!, which is refered to as quasi-static case. Two different stress levels are
analysed: Tappi/Tys=0.2 and 0.5.

To characterize the evolution of plasuc zone, three parameters are
introduced:

(1) plastic zone size ahead of the crack tip, rp(6=0), which is normally
the maximum size;

(2) half the plastic zone hight, hpax (since the plastic zone is symmetric
with respect to the crack line, its total maximum hight equals to 2hnax);

(3) the ratio of the plastic zone size behind the crack tip to that ahead
of the crack tip, rp(6=x)/r;(6=0); this parameter characterizes asymmetry of
the shape of plastic zone.

In the case of a semi-infinite crack the values of [(0) and hy,, are

: normalized by the crack length, a. Analyses are carried out for plane strain
‘ conditions with Poisson's ratio v=0.33.

Pt e ——————
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Estimations of the strain rate effect on the evolution of plastic zone
near the tip of a semi-infinite and an edge crack in mild steel are
presented in Fig.17 and Fig.18. One can find significant reduction of the size
of plastic zone with increasing strain rate from 104 to 103 s-1. For the

stress level Tappi/tys=0.2 (Figs 17a and 18a), reduction of rp(0) and hmax,

within the range of Y considered, reaches value of five times for the two
crack geometries studied, while the ratio rp(r)/rp(0) is kept nearly constant
and equal 1, i.e. the plastic zone is nearly symmetric with respect to the y-
axis (0=n/2). For the stress level t,pp1/tys=0.5 (Figs 17b and 18b), there is
stronger rate effect both on the plastic zone size and shape. I the strain
rate is increased from 10-4 to 103 s-!, the values of rp(0) and hy,x for a
semi-infinite crack are diminished respectively 7.4 and 6.0 times. For an
edge crack this reduction reaches 5.6 and 5.2 times. One can see also from
Figs 17b and 18b a significant change in the shape of plastic zone which is
asymmetrical in quasi-static loading and nearly symmetrical at high strain
rate. The asymmetry of the plastic zone for quasi-static loading is
characterized by factor rp(n)/rp(0)=0.47 for a semi-infinite crack and 0.76
for an edge crack.

Significant strain rate effect on the size and shape of plastic zone
found for mild steel is a consequence of strong rate sensitivity of the lower

yield stress. The latter is increased 2.2 times with increasing ¥ from 10-4to
103 s-1. For titanium alloy corresponding increase of the yield stress
reaches 1.4 which results in a lower reduction of the plastic zone in
comparison to steel. At Tappi/Ty=0.2, the size of plastic zone is diminished
twice for both crack configurations (Figs 19a and 20a). At Tapp/Ty=0.5, the
value of rp(0) is decreased respectively 2.6 and 2.2 times for a semi-
infinite and an edge crack, while the value of hpax is diminished twice for
both crack configurations (Figs 19b and 20b). The change in the factor
rp(n)/rp(0) is similar to that observed for mild steel with the shape of
plastic zone being more asymmetric at higher strain rates and Tapp/Ty=0.5.

As it is mentioned in Chapter 4, no rate sensitivity of the yield stress

for aluminum alloy is found at Y =10-4...103 s-1. Thus, one can expect no
strain rate effect on the size and shape of plastic zone within this range of

Y. The predicted values of the parameters of the plastic zone geometry are
listed below:

R o SR
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Semi-infinite crack 1p(0)/a 0.017 0.168
hmax/a 0.008 0.0453
rp(®)/1,(0) 0.929 0.470
Edge crack rp(0), mm 1.605 11.39
Nmax, mm 0.730 4.64
Ip(m)/rp(0) 0.994 0.79

Note that the present approach to estimate the size and shape of
plastic zone takes no account of stress redistribution due to plasticity. If
Irwin's correction is applied, the value of rp ahead of the crack tip is twice
larger then predicted by Figs 17 to 20, while the rp(x} and hpy,. values
may remain unchanged. Thus, more significant plastic zone asymmetry can
be expected with the plastic zone being predominantly concentrated ahead
of the crack tip. For instance, with Irwin's correction, the rp(n)/r,(0) factor
for an edge crack in mild steel at T,pp/Tys=0.5 reaches value 0.38. This
result is in qualitative agreement with the finite-element solution of
Banks-Sills and Sherman (1960). (Since a specimen with stress
concentrator is analyzed by those authors, quantitative comparison of
results 1s not available.)

It seems reasonable to say, by analogy with Mode I crack, eqs (1.4)
and (1.5), that certain relations between the maximum size of plastic zone
(I'p.max). material fracture toughness (Kyi¢c) and minimum specimen
thickness (B) must exist. If it is the case and the ratio r,(0)/B is considered
as a measure of plasticity effects at the crack tip, the results on variation of
rp with strain rate can be used in predicting the minimum thickness (or

width) of specimen versus "{. For example. at the stress level Tapp/Tys=0.5
(which is normal in Mode II fracture toughness tests; see Banks-Sills and
Sherman. 1991), our results for an edge crack in mild steel (Fig.18b)

predict the specimen thickness at high strain rate (Y =103s-1) 5.6 times

smaller than in quasi-static test (y=10-%s-1). For titanium alloy at the same
conditions (Fig.20b), reduction of the specimen size is 2.2 times.
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6. Strain Rate Effect on Behavior of the Crack Tip
Fields in Mode II Via the HRR-Solution

Tae results on evolution of the plastic zone with strain rate as a parameter
piesented in Chapter 5 are based exclusively on the rate sensitivity of the
yield stress. Some additional information on the behavior of crack tip fields
at different strain rates can be obtained from analysis of the HRR-solution,
eqs (3.11), which incorporate parameters of the stress-strain curve.
However, it is important to note that the HKR-solution cannot be directly
employed to evaluate the size of the plastic zone near crack tip. Indeed, the
plastic zone boundary is interpreted as a line of the constant equivalent
stress, 1.6. 6. =0y Wwith P=0. Since the elastic stress and strain componeats
have been ncglected when deriving the HRR-field (see eq.(3.7)), the latter
seems to be valid only at high stress and strain levels,
6,>0y and eP>>ey,

or, equivalently, in a small vicinity of the crack tip with a radius being
much smaller the plastic zone size, i.. Iipg << 1,. Moreover, eqs (3.11) yield
only the dominant components of the crack tip field. The range of
dominance of the hRR-solution is often determined as (e.g., Du er al., 1951)

fg = B L (6.1)

'

with § ranging from about 2 to 5. In the case of numerical example
presented in Fig.18b (Mode II crack of finite length in mild steel) one can
find from eq.(6.1) rgeg = 0.05...0.1 mm.

Rice and Rosengren (1968) calculated boundaries rg(8) of the equal
equivalent stress versus the strain hardening exponent in Mode I. Their
results on the rg-evolution are in qualitative agreement with direct
computations of the size and shape of plastic zone near the crack tip (Shih,
1974). Thus, a qualitative analysis of the behavior of plastic zone near the
crack tip at differeat strain rates can be performed employing the HRR-
solution. However, it seems to be more rational in such analysis to
characterize tae evolution of crack tip fields via the equivalent plastic
strain which simglifies identification of a corresponding point of stress-
strain curves obtained at different strain rates.

6.1. Evolution of the Strain Field near a Crack Tip in Mode 11
Jor Mild Steel and Titanium Alloy

Numerical examples of the strain field near a crack tip are given for the
case of a finite length edge crack in a stwip with ¢ = 50 mm and W = 100
mm. Corresponding assessments of evolution of the plastic zone founded on
the SSY-approximation are presented in Figs 18 and 20 for mild steel and
titanium alloy respectively.
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Making use of egs (3.6),(3.11).(3.22) and (2.7), one can find the
radius of a boundary of the equal equivalent plastic strain eP = 8.y, (with
B.=const) as follows

2 . r
r, _31 - v I_a Tmnm Zé‘“ Ky (6.2)
(II(N) N3 BE} Ty

Here the small scale yielding and plane strain conditions at the crack tip
are assumed; also the Huber-Mises yield criterion is employed.
Figure 21 presents variation of r.-boundaries at the crack tip in mild

. . -4 -
steel at the strain rate range v = 1.31x10 107 s

Two deformation levels
are anz'ysed: ef = 0.03 and 0.06 which correspond approximately to points
with ¥ = 0.05 and 0.1 on the stress-strain diagrams in Fig.11. The results in
Fig.21 demonstrate more complicated and somewhat different behavior of

‘ the crack tip fields versus the strain rate than those presented in Fig.18a,b.
With increasing strain rate the dimensionless radius

R,=r, (EJLS
\ Ko
of the r-boundaries ahead of the crack tip sligtly diminishes and after takes

the maximum value at ¥=2.85x10" 5. The values of Re max are 0.0072 and
0.003 for ¢ = 0.03 and 0.06 respectively. Further increase in the strain rate
results 1n fast diminishing of the R, value ahead of the crack tip. This
nonmonotonic variation of the R, _,, value is a consequance of a complex
dependence of plasticity parameters (cy , a, N) upon the strain rate (Fig.12).

At lower strain rates (1.31x107" s' to 2.85x10°% s') the value of a is
nearly constant, and increase of oy and N with strain rate leads to R, be
almost unchanged. At higher strain rates the HRR-solution predicts
substantial reduction in the value of R, ;,, due to decreasing of a and
increasing of oy, which effect is much stronger than expansion of the R,-
zone due to increase of the strain hardening exponent.

In contrast, the R, value behind the crack tip and the maximum hight

of r,-boundaries decrease monotonically with increasing ¥.Another
important feature of r.-boundaries behavior consists in fast diminishing of

. the r.(n)/r,(0) ratio which changes from 0.24 at ¥y =1.31x10" s to 0.05 at

¥y=10" s'. Thus, if a certain correlation between re and r, values exists, one
can conclude that at high strain rates almost the whole plastic zone area is
concentrated ahead of the crack tip; note that the SSY-approximation

(Fig.18) predicts the plastic zone at high strain rates nearly symmetrical
with respect to the y-axis.
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Numerical results on evoluiion of r.-boundaries at the crack tip in
titanium alloy Ti6Al4V are presented in Fig.22 for eP = 0.02. This

defcrmation level corresponds to yP = 0.035 and total deformation €, =
0.032...0.036 in Fig.13. Comparing to mild steel, no significant rate
sensitivity of r¢.-boundaries at the crack tip in titanium alloy is observed:

with increasing strain rate from 10* s w0 10° s’!, the maximum size and
hight of the r.-boundary is diminished approximately 15%, while the size of
the r.-boundary behind the crack tip is decreased twice. This is due to

relatively weak rate sensitivity of the plasticity parameters for titanium
alloy.

6.2. Comparison of Approximate Results on the Plastic Zone
Analysis with Numerical Solutions

Only a few numerical solutions on the plastic zone near a crack tip in Mode
I are known. Shih (1974) and Pan and Shih (1990) published results on
variation of the plastic zons geometry versus the strain hardening e¢xponent
at constant a and oy. Their finite-element solutions are constructed within
the framework of the boundary layer formulation for small scale yielding
and plane strain. Banks-Sills and Sherman (1990) obtained an elastic-plastic
stress field for the specimen shown in Fig.6.17. Different levels cf the
applied load were analysed: ‘Cappll‘cy = 0.35...0.52, where Tappl is a nominal
stress defined as
P

Tappl = W
tis the specimen thickness, W is the specimen width in a cracked section
(W = 30 mm in Fig.6.17). The lower and upper load levels may be refered
respectively to as a small scale yielding and fully plastic solutions.

Plastic zone boundaries versus N are shown in Fig.23, after Shih
(1974) and Pan and Shih (1990). In both papers the constant o in the
Ramberg-Osgood equation is equal 3/7. Variation of the plastic zone versus
the load level is presented in Fig.24, after Banks-Sills and Sherman (1990).
Their results are obtained for aluminum alloy Al 7075-T7351 with
parameters of the Ramberg-Osgood equation found to be «a=1.25, N=14.
Table 6.1 lists dimensionless parameters of the plastic zone geometry

T T
R, max = 1,(0) [%n]z , Hy=h, (RYI;T and r,(r)/r,(0)
found from the papers mentioned above, as well as results obtained in
Chapter 2 founded on the two-parameter crack tip stress field
representation (Fig.5b) and with Irwin's plasticity correction. One can
conclude from analysis of numerical solutions that both effects of the strain
hardening exponent and load level on the plastic zone behavior are similar:
increase of N or 'Cappl/ty yields substantial growth of the plastic zone size
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Table 6.1
Parameters of the plastic zone geometry
Reference ‘appl/"Y a N | S— H, T (r)/r,(0)
Shih (1974) - 37 1 0.16 0.067 1.0
- 3 0.24  0.080 0.5
- 13 029 0.076 0.21

Pan and Shih - 37 3 0.17 0.064 0.76

(1990) - 10 021  0.061 0.32
Banks-Sills and 0.35 1.25 14 0.48 0.11 0.24
Sherman (1990) 045 0.69 0.12 C.15

0.48 054 0.13 0.13
0.52 042 0.10 0.1

Present study, 0.2 - - 0.34 0.071 0.46
2-parametrical 0.3 037  0.074 0.39
elastic stress field 0.5 0.53 0.08s 0.23

representation
Present study, - 7 3 0.26 0.075 0.28
r,-boundaries - 13 030  0.067 0.07

according to

eq.(6.3)
Preseat study, - i3 0.24 0.072 0.29
r,-boundaries 13 038  0.091 0.06

at EE/SY = 1

ahead of the crack tip and diminishing of the rp(m)/1,(0) ratio. At the same
time only slight change in the H, is observed.

One can find certain disagreement in reviewed numerical results. The
data of Shih (1974) and Pan and Shih (1990) for identical conditions (a=3/7,
N=3) differ up to 50% when analysis is made for the R; p,, value and
rp(m)/r,(0) ratio. Comparison of the plastic zone solution of Banks-3ills and
Sherman (1990) with results cf Shih (1974) and Pan and Shih (1990) is not
available because of the difference in values of @ used in those analyses.
Nevertheless. the asymmetry factor, r,(%)/r;(0), in the SSY analysis
(Toppi/Ty=0-35) of Banks-Sills and Sherman (1990) is very close to that in
Shin's (1974) solution with N=13.

It should be noted befor discussing results of the present study on the
plastic zone behavior versus the load level, that the approach employed in
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Chapter 2 together with Irwin's plasticity correction is equivalent to the use
of the elastic-perfectly-plastic model (N=e). This is close to the case
considered by Banks-Sills and Sherman (1990), and comparison of our
results with the finite-element solution of Banks-Sills and Sherman (1990)
seems to be resonable. One can find from the data presented in Table 6.1
that values of R, ,,x determined in the present study are within 20% of the
numerical results, while the error in estimation of Hp and rp(n)lrp(O) is
higher (20...50%). Thus, for materials with high values of the strain
hardening exponent the two-parameter crack tip field characterization
together with Irwin's plasticity correction yield realistic assessments of the
plastic zone size ahead of the crack tip in Mode II.

6.3. Correlation of r, and r,-Boundaries with the Plastic Zone
Geometry

It is interesting to compare boundaries of equal equivalent stress and
plastic strain with plastic zone configurations. Figure 25 shows variation of
Iy-boundaries versus the level of o, . Calculations were carried out for
a=3/7 and two values of the strain hardening exponent: N=3 and 13. After
comparing of those results with data of Shih (1974) (see Fig.23a and Table
6.1), one can conclude coincidence of ry and I, values ahead of the crack tip
at g, = 1.30, for N=3 and at 6, = 1.080, for N=13. It is evident that at N>
the condition ry =r, holds at 6, = gy; thus for N23 the following relationship
G, =0y (1 + 0.9/N) (6.3)

seems to be valid to estimate the rp(O) value from the HRR-field. The
numerical results on configuration of rg-boundaries for the stress level
determined by eq.(6.3) are presented in Table 6.1. Note that not only values
of r5(0) but also the maximum hight of the r,-boundaries are in good
agreement with r,-solution of Shih (1974). At the same time the value of
rq(m) is underestimated. This is a consequance of the fact that the HRR-
solution involves only dominant singular terms of the stress field. One could
expect that the use of nonsingular terms in eqs (3.11) would lead to a more
realistic assessments of r, as well as r,-boundaries.

For the same conditions (a=3/7, N=3 and 13), Fig.26 shows variation aof
re-boundaries versus the level of ef. One can see a good agreement between
re-values ahead of the crack tip and rj-solution of Shih (1974) at el = (1 ...
1.5) gy (Table 6.1). Since the condition r (0) = rp(O) is satisfied at nearly

constant level of ef , the use of r.-boundaries to characterize the plastic zone
behavior versus N seems to be preferable. However, this conclusion is valid
only for materials which stress-strain curves can be approximated by the
Ramberg-Osgood equation at low deformation levels, ef = &, . It is not the
case for mild steel which stress-strain diagram in low strain level is
nonmonotonic (Fig.11).

PR * WS
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7. Conclusions

In the present study an approximate parametric analysis of the strain rate
effect on the crack tip fields in Mode II is carried out. Evolution of the
plastic zone and crack tip stress and strain fields at different strain rates is
modelled via corresponding quasi-static solutions which couple strain rate
sensitivity with plasticity parameters (ty, &, N). An attempt is made to
predict the size and shape of the plastic zone within the SSY approximation
based on the two-parameter characterization of the crack tip field, eq.
(2.16). For materials with a high strain hardening, such approach together
with Irwin's plasticity correction is found to provide an adequate
evaluation of the plastic zone size ahead of the crack tip as well as the
maximum hight of plastic zone. Our results on r, ;,,-variation versus the
load level are within 20% of the numerical solution by Banks-Sills and
Sherman (1990), for t,,,/ty ranging from 0.35 to 0.52. By analogy with the
case of Mode I (Larsson and Carlsson, 1973), the two-parameter
characterization of the crack tip field can be employed in finite-clement
analysis through the boundary layer formulation. In this way more
realistic plastic zone assessments can be obtained with minimum
computational effor:s.

Making use of the SSY approximation, evolution of the plastic zone
near the crack tip is analysed at different strain rate for materials with
different rate sensitivity of the yield stress. Significant decrease of the
plastic zone size with increasing strain rate is found for mild steel. At the
load level ‘Cappl/‘cy = 0.5, which is typical for fracture toughness tests,

increase of the strain rate from 10 s’ to 10° 5™ leads to 5.6... 7.4 times
reduction in the maximum plastic zone size (depending upon a crack
geometry). The rate sensitivity of the plastic zone size is stronger at higher
load levels. For titanium alloy, the reduction factor of the plastic zone size
is 2.2 at the same range of the strain rate. No rate sensitivity of the plastic
zone is predicted for the aluminum alloy. Since the maximum size of the
plastic zone can be considered as a measure of plasticity effects at the
crack tip, one can expect reduction of the minimum specimen thickness for
Kpjc-measurement at increased strain rates as proportional to the change of
Tp.max-

When the HRR-solution is employed to characterize the crack tip
fields, evolution of boundaries of equal equivalent stress and plastic strain
can be derived. For mild steel, the maximum size of the r.-boundary
changes in nonmonotonic way versus strain rate (Fig.21), with the

maximum value at ¥= 2.85x107% 5! for ¢? = 0.03 and at y = 0.44 s! foref =

0.06. This maximum value found from Fig.2l is of the order (10%...10Ya ,
which is close to the process zone size. For deformation levels considered
decrease of the r.-boundary for mild steel within the range of strain rate
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from 10 s! to 10® s! constitutes 40... 50%. In contrast, the size of rg-

boundary for the titanium alloy is changed monotonically with strain rate,
and the total reduction of the r, ,x-value within the range of strain rate

from 10*s" to 10° 57! is 10%.

From the point of view of experimental investigation of crack
initiation and fracture toughness measurement in Mode II, application of
three types of specimens seems to be preferable: (a) specimen in
asymmetric four-point bending (Fig.6.11); (b) compact specimen for three-
point loading (Fig.6.15, Case 3); (c¢) compact specimen for two-point loading
(Fig.6.17). These specimens provide pure Mode II at the crack tip. Some
experimental data on determination of fracture toughness (Table 2.1)
demonstrate that the Ky -values for metallic materials are normally higher

thanK;, . However, the results of Tohgo ez al. (1990) show that it is not a
common rule. For brittle materials (e.g., perspex, Al,O3 ceramics), the ratio
Kyo/Kc is slightly less than unity. Note also that no unique fracture

criterion can be employed to predict the crack initiation angle for brittle
and ductile materials. The maximum tensile stress or minimum strain
energy density criteria can be used in predicting a crack path in brittle
materials, while the maximum shear stress criterion seems to control crack
initiation in metals.



A o

47

REFERENCES

e Rty

Awaji, H. and Sato, S. (1978). Combined mode fracture toughness
measurement by the disk test. J. Engng Mater. Technol. 100, 175-182,

Banks-Sills, L. and Arcan, M. (1986). in Fracture Mechanics:
Seventeenth Volume, ASTM STP 905, pp. 347-363.

Banks-Sills, L. and Sherman, D. (1990). Elasto-plastic analysis of a
mode II fracture specimen. Int. J. Fracture 46, 105-122.

Banks-Sills, L. and Sherman, D. (1991). Ji; fracture testing of a
plastically deforming material. Int. J. Fracture 50, 15-26.

Betegon, C. and Hancock, J.W. (1991). Two-parameter characterization
of elastic-plastic crack-tip fields. J. Appl. Mech. 58, 104-110.

Broek, D. (1987). Elementary Engineering Fracture Mechanics (Fourth
revised edition). Martinus Nijhoff Publishers.

Bueckner, H.F. (1958). The propagation of cracks and the energy of
elastic deformation.Trans. ASME 25, No.5, 1225-1230.

Campbell, J.D and Ferguson, W.G. (1970). The temperature and strain-
rate dependence of the shear strength of mild steel. PAhil. Mag. 21, 63-82.

Chantaramungkorn, K. and Keer, L.M. (1975). Stress analysis for a
layer of finite length bonded to a half-space of identical material. Int. J.
Solids Structures 11, 1079-1096.

Cheng, W. and Finnie, 1. (1990). K1 solutions for an edge-cracked strip.
Engng Fracture Mech. 36, 355-360.

Cherepanov, G.P. (1979). Mechanics of Brittle Fracture. New York:
McGraw-Hill.

Davies, J., Morgan, T.G. and Yim, A.W. (1985). The (finite elemeﬁt

analysis of a punch-through shear specimen in mode II. Int, J. Fracture
28, R3-R10.

Du, Z.Z., Betegon,C. and Hancock, J.W. (1991). J dominance in mixed
mode loading. Int. J. Fracture 52, 191-206.

Duffy, A.R. et al. (1969). Fracture design practice for pressure piping.
Fracture, Vol.l. Academic press, New York, pp. 159-232.



.

48

Dugdale, D.S. (1960). Yielding of steel sheets containing slits. J. Mech.
Phys. Seolids 8, 100-108.

Freund, L.B. (1978). Stress intensity factor calculations based on a
conservation integral. Int. J. Solids Structures 14, 241-250.

Freund, L.B. (1990). Dynamic Fracture Mechanics. Cambridge University
Press, U.S.A.

Hartranft, R.J. and Sih. G.C. (1973). Alternating method applied to edge
and surface crack problems. Methods of Analysis and Solutions of
Crack Problems: Mechanics of Fracture, Vol.1l. Noordhoff, Leyden.

Hasebe, N. (1979). Uniform tension of a semi-infinite plate with crack at
an end of a stiffened edge. Ing.-Arch. 48, 129-141.

Hasebe, N. (1981). An edge crack in a semi-infinite plate welded to a
rigid stiffener. Proc. Japan Soc. Civil Engng 314, 149-157.

Holt, D.L., Babcock, S.G., Green, S.J. and Maiden, C.J. (1967). The

strain-rate dependence of the flow stress in some aluminum alloys. Trans.
ASM 60, 152-159.

Hoyniak, D. and Conway, J.C. (1979). Finite element analysis of the
compact shear specimen. Engng Fracture Mech. 12, 301-306.

Hutchinson, J.W. (1968a). Singular behaviour at the end of a tensile
crack in a hardening material. J. Mech. Phys. Solids 16, 13-31.

Hutchinson, J.W. (1968b). Plastic swess and strain fields at a crack tip. J.
Mech. Phys. Seolids 16, 337-347.

Irwin, G.R. (1957). Analysis of stresses and strains near the end of a
crack traversing a plate. J. Appl. Mech. 24, 361-364.

Irwin, G.R. (1960). Plastic zone near a crack and fracture toughness.
Proc. 7th Sagamore Conf. pp. 1V-63.

Jiang, C.W. and Chen, M.M. (1974). Report No. AMMRC-CTR 74/23.
Waiertown, MA.

Jones, D.L. and Chisholm, D.B. (1975). An investigation of the edge-
sliding modes in fracture mechanics. Engng Fracture Mech. 7, 261-270.

Kalthoff, J.F. and Winkler, S. (1987). Failure mode transition at high
rates of shear loading. Impact '87: International Conference on Impact




49

Loading and Dynamic Behaviour of Materials, DGM Informationsgesellschaft,
Verlag, Oberursel. Vol.1, pp. 185-195.

Kanninen, M.F. and Popelar, C.H. (1985). Advanced Fracture
Mechanics. Oxford University Fress, Oxford, U.K.

Ke, JJW,, Chi, L.H. and Kao, H. (1978). Calculation of stress intensity
factors for combined mode bend specimens. Advances ir Research of
Strength and Fracture of Materials: Proc. 4th Int. Conf Fracture (ICF4),
New York etc. Vold4, pp. 123-133.

Kiepaczko, J.R. (1%69). The strain rate behavior of iron in pure shear.
Int. J. Solids Sitructures 5, 533-548.

Klepaczko, J.R. (1987). A practical stress-strain-strain rate-temperature
constitutive relation of the power form. J. Mechanical Working Technol.
15, 143-165.

Klepaczko, J.R. (1990). Dynamic crack initiation, some experimental
methods and modelling. Crack Dynamics in Metallic Materials,
Sgringer-Verlag, pp. 255-453.

Lee, Y.J. and Freund, L.B. (1990). Fracture initiation due to asymmetric
impact loading of an edge cracked plate. J. Appl. Mech. 57, 104-111.

Larsson, S.G. and Carlssen, A.J. (1973). Influence of non-singular
stress terms and specimen geometry on small-scale yielding at crack tips in
elastic-plastic materials. J. Mech. Phys. Solids 21, 263-277.

Maccagno, T.M. and Knott, J.F. (1992). The mixed mode I/II fracture
behaviour of lightly tempered HY130 steel at room temperature. Engng
Fracture Mech. 41, 805-820.

Maiden, C.J. and Green, S.J. (1966). Compressive strain-rate tests on

six selected materials at strain rates from 107> to 10° in/in/sec. J. Appl.
Mech. 33, 496-504. :

Mall, S. and Mol, J.H. (1991). Mode II fracture toughness testing of a
fiber-reinforced ceramic composite. Engng Fracture Mech. 38, 55-69.

Mason, J.J., Lambros, J. and Rosakis, A.S. (1992). The use of a
coherent gradient sensor in dynamic mixed-mode fracture mechanics
experiments. J. Mech. Phys. Solids 40, 641-661.




e ————

. n e et n v - ———— ——— -

50

Murakami, Y. (1980). Analysis of mixed-mode stress intensity factors by
body force method. Numer. Meth. Fracture Mech.: Proc. 2nd Int. Conf.
(Swansea, 1980). pp. 145-156.

Nemat-Nasser, S. and Obata, M. (1984). On stress field near a
stationary crack tip. Mechanics of Materials 3, 235-243.

Nishioka, T., Murakami, T., Takemoto, Y. and Sakakura, K. (1991).
Mixed-mode impact fracture tests and their numerical simulation.
Mechanical Behaviour of Materials - VI: Proc. Sixth Int. Conf (Kyoto,
Japan). Vol.1, pp. 457-462.

Pan, J. and Shih, C.F. (1990). Elastic-plastic analysis of combined mode
I and III crack-tip fields under small-scale yielding conditions. J. Appl.
Mech. 57, 259-267.

Panasyuk, V.V., Savruk, M.P. and Datsyshin, A.P. (1976). Stress
Distribution near Cracks in Plates and Shells. Kiev, Naukova Dumka.

Rice, J.R. (1968a). A path independent integral and the approximate
analysis of strain concentration by notches and cracks. J. Appl. Mech. 35,
379-386.

Rice, J.R. (1968b). Mathematical analysis in the mechanics of fracture.
Fracture, Vol.2. Academic Press, New York, pp. 191-311.

Rice, J.R. (1974). Limitations to the small scale yielding approximation for
crack tip plasticity. J. Mech. Phys. Solids 22, 17-26.

Rice, J.R. and Rosengren, G.F. (1968). Plane strain deformation near a
crack tip in a power-law hardening material. J. Mech. Phys. Solids 16, 1-
12.

Ritchie, R.O., Knott, J.F. and Rice, J.R. (1973). On the relationship
between critical tensile stress and fracture toughness in mild steel. J.
Mech. Phys. Solids 21, 365.

Rooke, D.P. and Jones, D.A. (1979). Stress intensity factors in fretting
fatigue. J. Strain Analysis 14, 1-6.

Russell, A.L. and Street, K.N. (1982). Factors affecting the interlaminar
fracture energy of graphite epoxy laminates. Progress in Science and

Engineering of Composites. Japan Society of Composite Materials, Tokyo.
pp. 279-289.




;
’.3

51

Savruk, M.P. (1988). Stress Intensity Factors in Cracked Bodies:
Handbook. Kiev, Naukova Dumka.

Shih, C.F. (1974). Small-scale yielding analysic of mixed mode plane-
strain crack problems. Fracture Analysis, ASTM STP 560, pp. 187-210.

Sih, G.C. (1973). Introductory chapter: A special theory of crack
propagation. Methods of Analysis and Solutions of Crack Problems:
Mecanics of Fracture, Vol.1. Noordhoff, Leyden.

Sih, G.C. (1974). Strain-energy density factor applied to mixed mode
crack problems. Int. J. Fracture 10, 305-321.

Tada, H., Paris, P.C. and Irwin, G.R. (1973). The Stress Analysis of
Cracks: Handbook. Hellertown, Del Research Corp.

Tada, H. (1974). Addition to Tada et al. (1973).

Takamatsu, T. and Ichikawa, M. (1991). Fracture criterion for
initiation and stable crack growth under mode I-1II mixed-mode loading
conditions. Mechanical Behaviour of Materials - VI: Proc. Sixth Int.
Conf. (Kyoto, Japan). Vol.4, pp. 257-262.

Tanaka, K. and Kinoshita, M. (1967). Compressive strength of mild
steel at high strain rates at high temperature. Bull. JSME 10, 429.

Tohgo, K. and Ishii, H. (1992). Elastic-plastic fracture toughness test
under mixed mode I-II loading. Engng Fracture Mech. 41, 529-540,

Tuba, LI.S. (1966). A method of e¢lastic-plastic plane stress and plane
strain analysis. J. Strain Analysis 1, 115-122.

[EPTRY e




Figure Captions

Figure 1. Coordinate systems at a crack tip.
Figure 2. Schematic illustration of Irwin's correction for plasticity.
Figure 3. Plastic zone size ahead of the crack tip in Mode II based on the

Dugdale model and Irwin's ccrrection for plasticity.

Figure 4. Plastic zone shapes at the crack tip in Mode II based on

' the Huber-Mises and the Tresca vyield criteria.

Plastic zone shapes at the crack tip in Mode II based on the

two-parameter representation of the stress field and the

Huber-Mises yield criterion.

Figure 6. Crack geometries in Mode II.

Figure 7. Calibration curves of the stress intensity factor for the compact
shear specimen, Fig.6.15 (o=P/(tH), t is the specimen thickness).
(a) Ky for the Case 2 of loading at different sizes of the
specimen, after Hoyniak and Conway (1979). (b) Ky and S for
different loading schemes, after Savruk (1988).

Figure 8. HRR stress and strain fields for Mode II crack in plane strain.

Figure 9. HRR stress and strain fields for Mode II crack in plane stress.

Figure 10. Variation of the I(N)-factor versus N for plane strain and plane
stress.

Figure 11. Swuess-strain curves for technically pure iron in shear tests at
different strain rates (data of Klepaczko,1969).

Figure 12. (a) Rate sensitivity of the lower yield stress in shear for mild
steel and technically pure iron;
(b) Rate sensitivity of constants in the Ramberg-Osgood
equation for technically pure iron.

Figure 13, Stress-strain curves for  titamum Ti6Al4V  alloy from
compression tests at different strain rates (daia of Maiden and
Green, 1966).

Figure 14. Rate sensitivity of the vield stress in shear and material
constants in the Ramberg-Osgood equation for Ti6Al4V alloy.

Figure 15. Stress-strain curves for Al 6061-T6 alloy from compression
tests at different strain rates (after Maiden and Green, 1966).
Conversion factor for smess: 1 ksi = 6.895 MPa.

Figure 16. Rate sensitivity of the yield stress in shear for Al 6061-T6
alloy (data of Jiang and Chen, 1974).

Figure 17. Variation of parameters which characterize the geometry of
plastic zone near the crack tip versus logarithm of strain rate
for a semi-infinite crack in mild steel: (a) Typp/Tys=0.2; (b)
Tappl/'\'ys—-o.s .

Figure 18. Variation of parameters which characterize the geometry of
plastic zone near the crack tip versus logarithm of strain rate
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26.

for a finite length edge crack in mild steel: (a) Tupp/Tys=0.2; (b)
Tappl/‘tys-_-o.s.

Variation of parameters which characterize the geometry of
plastic zone near the crack tip versus logarithm of strain rate
for a semi-infinite crack in Ti6Al4V alloy: (a) Tapplltys=0.2; (b)
‘Cappl/‘tys=0.5 .

Variation of parameters which characterize the geometry of
plastic zone near the crack tip versus logarithm of strain rate
for a finite length edge crack in Ti6AIYV alloy: (a) t,5,1/Tys=0.2;
(b) tappi/tys=0.5.

Boundaries of equal equivalent plastic strain at the crack tip in
Mode II in mild steel versus strain rate: (a) ef = 0.03;

(b) ef = 0.06.

Boundaries of equal equivalent plastic strain at the crack tip in
Mode II in Ti6Al4V allcy versus strain rate, €f = 0.02.
Finite-element solutions on variation of the plastic zone
boundary versus strain hardening exponent at the crack tip in
Mode 1I: (a) after Shih (1974); (b) after Pan and Shih (1990).
Finite-element solution on variation of the plastic zone
boundary versus load level at the crack tip in Mode II (after
Banks-Sills and Sherman, 1990): (a) t,ppi/tys = 0.35; (b)
Tapp/ Tys = 0.45; (€) Tappi/tys = 0.48; (d) 1y5p/Tys = 0.52.

. Boundaries of equal equivalent stress at the crack tip in Mode

II for a=3/7, N=3 (a) and N=13 (b).
Boundaries of equal equivalent plastic strain at the crack tip in
Mode II for a=3/7, N=3 (a) and N=13 (b).
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Figure 1. Coordinate systems at a crack tip.

Linear-elastic
stress distribution

Y
A

Figure 2. Schematic illustration of Irwin’'s correction

for plasticity.




~ L 2 N . ! 1 . | .
&
:" 1 Dugdale’'s model, edge crack of finite length
— x Dugdale’s model, semi-infinite crack
1.6 - — —Irwin's correction for plasticity |
1.2 —~ -
8 — —
4 —
|
0 M L 1 N 1B ; 1 o
0 2 4 6 8 1
-Caopl Y
, Figure 3. Plastic zone size ahead of the crack iip in Mode II based
on the Dugdale model and Irwin's correction for
plasticity.

P



Y. 25 L i i i i { i t
<
g o v=0. {(Planesrain/ Plane siress)
= P o v=30.1 {Piane swain)
- 2 , . -
o v=0.33 {Plane sirain)
o v=0.5 (Plane sran)
RS L
= -
28—~ -
3 4 -
2
TR
(a) = ’
S 2 ; | L i L !
35_5 o v=0. (Flane strain/ Plane stress)
Z a v=0.0 (Plane stramn)
“5 15 9 v=0.22 (Plane strain) B
P'asic zone atthe crack tio in Mode 1l
zasec on the Trescs yieid critenon
35 - -
O — 3 =
T T 7 T T T
2 15 : 35 Q 05 A 15 2
(b) r“(‘c.,:'K[)
Figure 4. Plastic zone shapes at the crack tip in Mode II based

on the Huber-Mises and the Tresca yield criteria.

e e eI WA e~

.<‘_<,_._W




)
I
-

X i
- o - 7.=0.05
_z 254 s I _7,=0.1 —
© ’Wl"'tv=0.2 v=0.
2 - 2 -.a:m:" :03
9 "“',"1:0,5
15 - L
1 —
J -
.y 3 ! ! ! | 1 L | ! ! 1
X
\>
= o - _7=005
\__a 25 2] 'lm-"t(=0.1 -
o 7 1,202 v=0.33
2 —l 2 -mou/- =0.3 -
5] 'm.-*:‘:O.S
15 -
05 <
0 -

Figure 5. Plastic zone shapes at the crack tip in Mode II based on

the two-parameter representation of the stress field and
the  Huber-Mises yield criterion.

sl e

PR




e —-——————_

]
1 °&)

| — e — — D

I = -

L € | —— «— 3

Figure 6.1

Figure 6.5

Figure 6.6

Figure 6.3

X Figure 6.7

S -




W

=N

2d

Figure 6.8

Figure 6.9

a

Jp
N

1\ﬁ|
I

)

3

w

\

i

|
L/2 | L

I | /2 I

74

Figure 6.10

pPs2

110

3P/8 ! P
t
”i III
'&20 '| 3P/8—1
- 110 -
- 180 -
Figure 6.11
/
1 1 a
1 w VT
1 |
/
e o f L o
Figure 6.12
hl | —
¥ P
7
i, .
¥ p
1 a -
Figure 6.13
lp
i ———

Figure 6.14

e o 4 31 Bstrren ereg Iy

W e




S N T S |
B4 O ay . & :
"'E'—':"'H <0 o -(——HH 2 —(ﬂ—» ) ; S <——>1H

Y —/ V \ \/
L4 w
Case 1 Case 2
Y Y
1 “l“ | T
Sal & WaW k e ) oW \
L] e
Vv V
w w
C. 3 Case 4
ase LV i
Figure 6.15
P
A
r ] r P 1P
e U] N T
AA ] 31
Y o
w —W% ,;r—$v-i 84
y L
tl & AN of
] 74
/ A Y ” -
p P
Figure 6.16 Figure 6.17

Figure 6. Crack geometries in Mode 1.




R

20 T T T T T T P s
g JONES AND CHISHOLM ’,/ .
m -~ — FINITE ELEMENT .
L6l g _
H=15 -7
- -9 J
= O = X 0
12b- - - /]
837 H=lQ -
— \;-0 _____ 0-'_---‘0__._‘_0____7 o -4
o8- TNol H=0,
= o)
i i T
Q4}- -
- n
o) 1 .\ 5 L 1 1 A 1
0 o] 02 03 04 c5 06 07 0.8 09
a/W
(a)

Figure 7.

VU r-} 7
| d
i'h‘%?(‘?
. '/4 ,
[ =
%) M

(b)

Calibration curves of the stress intensity factor for the
compact shear specimen, Fig.6.15 (o=P/(tH), ¢t is the
specimen thickness). (a) K; for the Case 2 of loading at
different sizes of the specimen, after Hoyniak and
Conway (1979). (b) K; and S for different loading
schemes, after Savruk (1988).

s mn g o



P
i

c
R
5
2
@
©
1))
v
o
« 0
] 2]
124 @2
' e X Plane strain fields, N = 1.01 i
, 1.6 T T T 1 ]
0 30 60 a0 120 150 180
0, deg.
o | 1 1 3 i N
1.2~ o E=-E -
c ® E n
R ‘ -
3 n
2 N
@ -
T [
R o
o
n

] T T T |
0 30 60 90 120 150 180

0, deg.

Figure 8a

-~



2z
i

Stress distribution,

o I
e =
® Z |
] o >: Plane strain fields, N = 3. _
! -1.6 T T T T I
0 30 60 90 120 150 180
8, deg.
=T 1.2 \ | 1 L i

Plane strain fields, N = 3.

Strain distribution,

i B 1 I 1 L

0 30 60 90 120 150 180

: 9, deg.
Figure 8b

!

e e T A e o Pt St S
- - S S s A
e rtera S - S - — T " S 4 gt e e -




. ’/i: 1.2 1 i i L , i }
S 5y |
= .
2 .
“'(;‘) .
o )
(79} =
(/)]

Q -
) z = '
0
-
e X -
& X -
o Ee Plane strain fields, N = 5. -
-1.6 T T | i |
0 30 60 a0 120 150 180
0, deg.
T 1.2 4 I i 1 1 1
] Ch
Q
= Plane strain fields, N = 5.
Q
R
O
£
o
N
-4 T T T T T T
0 30 60 90 120 150 180
t 0, deg
Figure 8¢




2
c
e
k=)
Q
0
o
()]
) .
o
)
-1.6 T T T 1 T ]
0 30 60 S0 120 150 180
0. deg.
= 1.2 ] ] 1 1 ]
E E -
- o E=-E -
.g ® E =
g .8 4 Plane strain fields, N = 7. -
k%) -
-O e
R ~
© -
5 -
‘ -4 T T T T T
: 0 30 60 a0 120 150 180
0, deg.
Figure 8d '




i
6.".. a t :
A . 444444444
_ g R 00000000000 000000003000
=]
9
=
R,
; K®;
: 9
n
| @
I —
. -~
; 2 ‘
0
e
o I
o I Plane strain fields, N = 10. =
1.6 ] T T I l
' 0 30 60 90 120 150 180
! 8, deg.
|
| o 19 e 1 I ! I L
_r
| - F =. B
! c o E=-F -
: o e E -
: E R Plane strain fields, N = 10. —
o
o
£
©
=
7))

Figure 8e




)

)

Stress distribution,

L

Strain distribution,

z
z,
0 30 60 90 120 150 180
B, deg.
1924 1 1 1 | 1
o E=-E N
o E -
.8 Plane strain fields, N = 13. -

{ 1 T 1 | T 13
0 30 60 g0 120 150 180
0, deg.
Figure 8f

[ Fa—



|

)

Stress distribution,

i

-
[
s

Strain distribution,

o X
o X =
d 2 )
-1.2 S 13} }:1 DD -
i e I Plane strain fields, N = 80. -
1.6~ I 1 T I —
0 30 60 90 120 150 180
0, deg.
1.2 4 | 1 ] | 1
o E=-E :
o E .

8 4 Plane strain fieids, N = 80. —

| T T T T T
Q 30 60 90 120 1580 180

Figure 8g

Figure 8. HRR stress and strain fields for Mode II crack
in plane strain




2
|
-y
(M
-
=
B | T

=
RS
5
Q
@
©
o)
W
9-_) .
% )
0o L
9 X
4 2 _ ) Z" : -
o I Plane stress fields, N = 1.01 -
-1.8 ] T T T |
0 30 60 a0 120 150 180
-
Q
5
Q
%
o
£
S
%)
] I | T ] T
\ 0 30 60 a0 120 150 180

Figure 9a '




Stress distribution,

{

0o X
8 X
o I
o ZE Plane stress fields, N = 3. -
1 | 1 1 T
30 60 a0 120 150 180
0, deg.

T I |
30 60 20 120 150 180

0, deg.

Figure 9b




-~

)

Stress distribution,

i}

-~
1

Strain distribution,

o
2]
©
{ e I Plane stress fields, N = 5. ~
0 30 60 80 120 150 180
0, deg.
| 1 1 1 1

0 30 60 90 120

Figure 9c

T
150

|
180
0, deg.

e i o




M
i

Stress distribution,

_,
I
-

Strain distribution,

o X

4 o 21 =
124 e X . o
| o Z Plane stress fields, N = 7. =

-1.6 I T T T 1
0 30 80 90 120 150 180
0, deg.

I ] 1 | 1

1
0 30 60 20 120 150 180

Figure 9d



Al 1.2 | L ] ] 1 B
c
Re
5
Q
%
ko
[7p]
[¢p]
Qo
0N

o I

o

o I

o Ze' Plane stress fields, N = 10. -

-1.8 1 1 T T T
0 30 60 20 120 150 180

0, deg.

= | l | ] 1 |

T ] T 1 T 1
0 30 60 90 120 150 180
9, deg.
Figure 9e

Rt



.

2

Stress distribution,

L

Strain distribution,

Plane stress fields, N = 13. -
-1.6 T 1 T T T
0 30 60 30 120 150 180
6, degq.
1 1 L 1 1
§ 0o E B
8 4 o E -
© E B
4 Plane stress fields, N = 13.

| T |
0 30 60 90 120 150 180
0, deg.
Figure 9f



ij

Stress distribution,

~
[
-

Strain distribution,

i

(4474744444

13
~
-1.6 I T ] | I
0 30 60 a0 120 150 180
0, deg.
1 1 1 | 1
8 :

Plane stress fields, N = 80.

EREALAL

l
30

—

1
120 150 180
0, deg.

Figure 9g

Figure 9. HRR stress and strain fields for Mode I crack

in plane stress




¢ e it

= 2 NS U SN TSNS GRS DU N B |
1.8 =
1.6 o Plane strain |
] o Plane stress

Jo
1
T

o
|

r— T T T T T T 1
8 110 2 14 16 18 20

Strain hardening exponent, N

o
Ny -
|28
o

Figure 10. Variation of the I(N)-factor versus N for plane strain and
plane  stress.

n

P —




350 - S .

b~
—

300 4

250 —

Stress, 1 (MPa)

200 —

150 —

Technically pure iron

- T T — T — o 1
0 A 2 3 4
Strain, v

Figure 11. Stress-strain curves for technically pure iron in shear
tests at different strain rates (data of Klepaczko,1969).

N N




\ = ! R R L1 1 i 1
a.
= - .
3 — 300 —H 0 Campbeil ana Ferguscn {1970y, 0.12°% C -
t} © Tanaka and Kinesnita {1$67), 0.06% C
- © Kiepaczko (1868), lecnnically pure iron
)
v
o © o
w200 o =
ke
>
&
z 100 4 L
e}
1
9 M
o
1 1 1 1 I i r T Bl
4 -3 -2 i o 1 2 3 4 5 6
(a) log v [s ]
u 24 1 | L 1 1 1 1
C
8 o i
) 0
c 20 - / -
'®)
Q J !
I ]
= 16 A 0 « / -
Q f N
© 1 T ically sure ron [
recnnically cure 1o
=2 12 A 0 )< —
L p
8 - \ —
4 2 .
;
A\
f 0 T T T T T T 7
-4 -3 -2 -1 0 1 2 3 f-;l
(o) log ¥ [s]
Figure 12. (a) Rate sensitivity of the lower yield stress in shear for
mild steel and technically pure iron;
(b) Rate sensiuvity of coostants in the Ramberg-

' . Osgood equation for techmically pure iron.

R < ca b )



o [MPa]

Stlress,

1600 L ] ] 1 1 1 1
] 3)
1400 4 - |
1200 - o
o
1000 -
800 A 0 £=4x10 s L
] ® ¢=8x10"s T
0 €=20. 3
400 TiBAIAV —
200 - -
1
0w ] T | T T T
G ot e Q3 gd 1) 06 Q7 .08
Strain, ¢

Figure 13. Swess-strain  curves for titanium  Ti6Al4V  alloy
from compression tests at different strain rates (data of
Maiden and Green, 1966).

e Mgt




Yield stress, 1, [MPa]
o0
3
{
ol

] 0 ARV _
200 — . g
' 0 T T T T T T
-& 3 -2 -1 0 : 2 3 4
(&) log 7 (S 1
12 ! ! | ! I i 1

Material constants

2 - -

| 0 % L
i 1 ! i | 1 i

a4 2 2 10 1 2 3 4

(b) log 7 [s ]

Figure 14. Rate sensitivity of the yield swess in shear and
: material constants in the Ramberg-Osgood cquation for
? Ti6Al4V alloy.




/.A
/“"’A
o °

a

;

»

=
- ’

L] —

i
)
'
i
]
z !

N i :
2o —
w H
z ;

i
L
N
- . -_—
|
| e
i a20Gi-1 6
! o 2.0CQ n./in./sec
o 2 212 n.finl/sec
0 - - . —
i A Z n/in./sexs ;
- 1
A =G in.sinsisec :
¥ 2T n.o'nlisecs
3 . - 3 4 b 3 A 3 3

Tirain, N0,

Figure 15, Stress-surain  curves for Al 6061-T6  alloy from
compression tests at different strain rates (after Maiden
and Green, 1966). Conversion factor for stress: 1 ksi =
6.895 MPa.

MRt T I



Yield stress, 1, [MPa]

200 i
0403/
e

- 1)
150 4 i
“0C — 0 AIBl6:-T2 i
2C 4 i

N

< -3 2 -3 o 1 2 3 _4
log7 [s ]

Figure 16. Rate sensitivity of the vyield stress in shear for Al
6061-T6 alloy (data of Jiang and Chen, 1974).

S S



m)/r (0=0)

(0

r

Semi-infinite crack
Maternal - mild steel
tm;"rys=0.2

01 -~ 5
'«r B
005 4
0 | |5 1 T T T
4 -3 2 -1 0 1 2 3
log v [s ]
L 1 L 1 1 |
1 - 3
a5 i
¢
2 o
.
o Semi-infinite crack
a5 Material - miid steel i
T 7 =02
o T T ] T T
432 ‘ 0 1 2 3
log ¥ [s ]
Figure 17a



? 1 B | i | | ] -3»
‘ NCEY o ;
= o Semi-infinite crack ,
B ) -
{ i Material - mild steel
= B4 -
= -
i
i - "
r—
6 -
5 - L
¢
T T T 1 T T
¢ '4 3 '2 "1 O ‘1 2 3
log 7 [s |
; & ) [ | 1 | 1 ]
_r:g 1 o r(6=0)a |
m h 'a
SRR 2 @ .
&
o Semi-infinite crack -
! & 4o Material - mild steel |
= T i1 =0.5
3po vs
1 e
! 08 o
{
é?‘\a\ B
04 & -
) w}\\ﬂ\’
. 0 - 1
T j I\ T T T 1T
-4 -3 -2 1 0 i 2 3
log 7 [s ]
; Figure 17b

Figure 17. Variation of parameters which characterize the geometry
of plastic zone near the crack tip versus logarithm of
strain rate for a semi-infinite crack in mild steel: (a)
tnppl/‘tYS':O'z.‘ (b) Iappl/"tys:O.s.

\



[RHE

(6=0) , h

P

(0=0)

m)/r

(0

r

f)

1 8 | { ! 1 ] L |
6 o r(6=0) -
. - 9 h'.!ax :..-
4 - -
1 Crack of 50 mm inlength -
2 A Material - miid steel -
1 —- Taom;/TYS=O'2 :
8 4 -
a ﬁR’L 9
0 = —
4 i
5] T
T T T T T T T
-4 -3 2 | 0 1 2 3
log 7 [s ]
1 1 I ] | 1
] N
1 - -—
‘ —
95 — o Crack ot 50 mm in length :
Matenai - mild steel -
T 7..=0.2 -
4 -
9 T T T T T T
4 3 2 -1 0 1 2 3

Figure 18a

conn s e B



= 12 1 L I L ! !
=

1] r:(e::O)
a h

~ax -

: |
-~ Crack of 50 mm in length

. 8 Material - mild steel —
ray 1 T /t1,.=0.5

ado

-
. 0 T T T T T I 1
-4 -3 -2 , 0 2 3
log 7 (s ]
= 1 | | | | 1
= o Crack of 50 mm in length )
= Material - milc sieg!
B 95 4 - x 05 -
,il ¥ oo L‘/S_ 2
= e .
8 — L
= _‘Lt'l'/ |
[ T T T T T T
43 2 . 0 w 2 3
log 7 [s |
hY
’ Figure 18b

Figure 18. Variatuon of parameters which characterize the geomeury
of plastic zone near the crack tip versus logarithm of
strain rate for a finite length edge crack in mild steel: (a) '\
Tappl/ Tys=0.21 (b) Typp1/Tys=0.5.

L\

§



n)/r (6=0)

(6=

r

ﬁ‘\w
.005 -
)

Semi-infinite ¢rack —
Material - Ti6AI4V
T /it =02

wpl Y

0 1 ] 1 i 1 |
-4 -3 -2 -1 0 1 2 3
logy [s ]

{ i 1 1 1 1
98 o Semi-infinite crack )

Material - TIBAI4V —
T /1=0.2 __
appi Y

.96 -
94 -
q [

| 1 | | ] 1
-4 -3 -2 -1 0 1 2 ::,
logy [s ]

Figure 19a

\ \

B T Sl



/a
[av]

mix

Oya, h

(6=
X!

r
p

m)/r (6=0)

(6=

r

Figure 19,

0 r(6=0)
e h " =
‘J Semi-infinite crack =
Material - TiGAI4V

T =05
atp Y

i 1 I 1 ! |
-4 -3 -2 -1 0 1 2 3
log 7 [s ]
| 1 | i i L

o Semi-infinite crack
— Material - Ti6Al4V
'cm/rv=0.5

L
r T 1 | T t
-4 .0 -2 -1 Q 1 2 3
Lo
logy [s ]
Figure 19b

Variation of parameters which characterize the geometry
of plastic zone near the crack tip versus logarithm of
strain rate for a semi-infinite crack in Ti6AlV alloy: (a)
tappl/"tYS=0.2'. (b) Tappl/TYS=O.5.



— 48 ] ! L 1 | !
= q 0 1 (0-0) -
= 1.6 ® h_ -
x 1.4 5 Crack of 50 mm in length R
= Material - TiBAI4V -
] 1.2 - T J1=02 —
5 1 -
A _
£ 84 8
Wy 2 L
.6 — .
4
2 -
0 T | T T T T ]
-4 -3 -2 -1 0 1 2 ?
logy [s]
S 1.04 | 1 L ! | ]
A
7 o Crack of 50 mm in length _
™ Material - Ti6AI4V
I -
< 102 4 Taw/Ty—O.Q 8
)
o :
L
[ T T T T T T
-4 -3 -2 -1 0 1 2 C?
: log Y [s]
Figure 20a




— ] 1 L ] 1 1
é 12 0 r{6=0) L i
= . e fi_ |

x 10 — Crack of 50 mm in length ~ '
_CE Material - TiBAI4V
T /1=05
= 8 . -
T |
o 6 -
4 — = 1
o _
0 T T T T T T
’ -4 -3 -2 -1 0 1 2 3
. -1
logy [s ]
= . | I | ] 1
i 1 |
= o Crack of 50 mm in length
= Material - TiEAI4V
n 95 T/t =05 B
<

r
[¢]
(8]
1
T

.85 -
.8 L
75 ~
i T |} I | | 1
4 -3 -2 -1 0 1 2 ? ;
log ¥ [s ]
\ Figure 20b

Figure 20. Variation of parameters which characterize the geometry
of plastic zone near the crack tip versus logarithm of ]
strain rate for a finite length edge crack in Ti6Al4V alloy:
(@) Tappi/Tys=0.2; (b) T4pp/tys=0.5.




.

ry('tYS/ K“)

i 1

006 A

004 4

002 A

o =121x10"s
o 7=2.77x10"s
o =2.85x10"s
o 7=044s

8 7=55 s

6] ‘?:1033.

Mild steel

£=0.03

Figure 21. Boundaries of equal equivalent plastic strain at the cracl%
tip in Mode II in mild steel versus strain rate: (a) ef= ¢

0.03; (b) €? = 0.06.

04
002
- : L
X 003 4 : S
= o 7=277x10"s
© 7=2.85x10"s
.002 o 7=0.445s Mild steel
® 7=55s £ =0.06
® ‘;/=1QJ s
001 -
0 4
-.001




v

|
N I IS NS S |
r > 1 i
e o 7=10 s
= s
NEN B v=6.9x10" s )
o v=1.4x10" s ,
06 — o =265 Ti6AL4V N
; J e =340 S-t E:=OO2
04 6 4=10"s ' N
, ]
- 02 4 i
2
04 HHFs _
N i | | 1 | M
-.03 0 03 06 .09 12 15
r (T\/SK |>h

Figure 22. Boundaries of equal equivalent plastic strain at the crack
tip in Mode II in Ti6Al4V alloy versus strain rate, e =
0.02.




-ry

—~—

-3
-3 {a)
2
WO s.8
T EJqg
- N=3 )
3.5 - ‘
: 2
'i ! x.Gl_
9.2 Ely
-3.45 -2.35 -3.5 3.2C 3.5 2.30 .45 950 1.TS
2 ©.3 .
y X ! N=10 |
by : N= i
3.5 - !
3.4 - :
r |
5.7 - i
= |
]
; 2
i =
9.9 3 L - . — - EJq
Q.45 -3.30 -3.5 2.00 05 0.30 0.45 0.60 0.7%

(b)

Figure 23. Finite-element solutions on variation of the plastic
zone boundary versus strain hardening exponent at the
crack tip in Mode II: (a) after Shih (1974); (b) after Pan
and Shih (1990).



Daee

- = & frisvtd

{a)
$isidet
' - S
3
B il
= ‘é,"’
~
: _ e et =
—
(d)
. Figure 24. Finite-element solution on variation of the plastic

zone boundary versus load level at the crack tip in Mode
Il (after Banks-Sills and Sherman, 1990): (a) ‘Capplftys =
0.35; (b) tappl/TYS = 0.45; (C) tappl/TYS = 048, (d) rappl/TYS =
0.52.




“—~ .6 1 — | I } . L 1 . é
Y é
™ :
’ r o G/0=10
‘ = P 0;!6_;1 .05
4 (3] Gein:“ A .
(4] G;I;sz“ 2
® 6/c,=13

2 = .
]
0
N | L 1 1 1
\{
w3
N 0 G/6,=1.05 -
B cei;cvz 1
® /0=
2 - =
(1=3/7 N=1 3
| 1 -
0 — -
T
A -1 0 1 2 3 4 5
p 2
(b) r((’t\/KH)

Figure 25. Boundaries of equal equivalent stress at the crack tip in
Mode II for a=3/7, N=3 (a) and N=13 (b).

€

1

\



\

N ) ] ] l ] ] ]
%} (1) E:/E_/=1 .
= 3,
:> 2 8;'/8\/:2
5 4 3. -
S I3} ge/&: =4,
[3) E:/E.=8.
R -
a=3/7, N=3.
.05 4 -
0 -
T T T T T T
x 05 0 .05 1 15 2 25
(a) r{=.K)
N 3 . | . | 1 1 .
<
""--.>_ )
2 o5 0o e/e=1. 8
- 2] EZ/SV=2
2 © 8:/'€Y=4 —
o £t =8.
15 4 > -
- -
.05 4 L
0 4 |
| T ! T
-1 0 1 2 3

. 4
(b) r (t/K,)

Figure 26. Boundaries of equal equivalent plastic strain at the crack
tip in Mode II for a=3/7, N=3 (a) and N=13 (b).

Bl 0T




